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Abstract: It is well known that the generation resource uncertainty induced by significant wind capacity raises concerns about grid security,
price stability, and revenue adequacy. One of the most promising solutions is the use of utility-scale energy storage, although the question of
general implementation of this strategy remains unanswered. This paper uses a simplified model to show that simple rules exist that govern
the decision to generate or store energy from a hybrid wind-storage system. The heuristics developed consider the combination of storage
efficiency, electricity price, and shortfall penalty and wind forecast characteristics to guide the decision of whether to bid energy into the
electricity market or not. Specifically, this paper develops the optimal strategy for use of a simplified system of an energy storage unit with a
wind generator. The solution is analyzed using a dynamic programming formulation in a simplified framework over a multiperiod planning
horizon. The analysis of the solution under all regimes yields insightful structural solutions regarding the conditions under which the wind
generator should bid into the energy market and when it should not. The results also provide insight into the specific implications of forecast
accuracy and market design on the need for storage. This analysis allows additional conclusions to be drawn about the value of various storage
technologies based on their capacity and efficiency characteristics. However, the most important contribution of this work is the understand-
ing of the importance of market penalties in encouraging participants to either improve forecasting ability or, perhaps more realistically,
contract storage to mitigate shortfall risk. Improving both forecasting accuracy and storage capabilities results in value reduction for both.
DOI: 10.1061/(ASCE)EY.1943-7897.0000177. © 2014 American Society of Civil Engineers.
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Introduction

The primary goal for integration of renewable resources into power
systems is the production of low-cost sustainable electricity to the
world’s population. There has been no shortage of research into the
management of these intermittent sources, and the consensus indi-
cates that in virtually any situation, wind power will require some
sort of coupled resource to mitigate its variability (DeCesaro et al.
2009). Many resources have potential for this application, includ-
ing, but not limited to, storage, responsive demand, and dedicated
reserves. Note that these categories are broad, can be used in com-
bination, and storage can take many forms from pumped hydro,
to compressed air energy storage, to batteries and flywheels. While
the body of literature discussing the implementation of such solu-
tions is growing, there is no single answer for the best practice for
optimal management of such systems.

The related research that has considered the coupling of wind
and various types of storage can be roughly divided into two cat-
egories: the use of optimization to design the coupled system and
the development of optimal control strategies.

Studies of the first category use optimization methods to deter-
mine the most financially efficient storage capacity for a specific
system. For example, one of the earliest studies by (Castronuovo
and Lopes 2004b) considers the optimal sizing of pumped storage
facilities to maximize revenue to the wind farm operator. A later
work by Abbey and Joos (2009) uses a two-stage, scenario-based
optimization to size the energy storage system (ESS) to minimize
the expected cost of serving load. This model uses very detailed
models of the financial parameters of the storage unit, and is solved
in the numerical package General Algebraic Modeling System
(GAMS). Most recently, Connolly et al. (2012) consider a case
study wherein a one-year simulation on an hourly basis is used
to consider various sizes of a pumped hydro storage facility in
Ireland to be used in conjunction with high penetrations of
wind. The authors find that the use of pumped hydro storage has
significant potential in the mitigation of wind variability, but the
economics have yet to be become compelling.

The second category of research into the use of storage to mit-
igate wind variability addresses the development of optimal control
policies to direct operational decisions. One of the first forays into
this area was presented in Castronuovo and Lopes (2004a), which
considers a wind-hydro coordinated energy system as a linear
program with stochasticity introduced through wind scenarios.
The Monte Carlo simulation framework allows the consideration
of a range of possible wind outcomes, providing a boundary on
power available from the system. In later work, these authors
consider the use of probabilistic wind forecasts in three different
operating approaches to assess revenue differences through the co-
ordination of two wind farms with a large pumped storage facility
(Castronuovo et al. 2013). Garcia-Gonzalez et al. (2008) consider
the use of pumped hydro to mitigate wind farm output fluctuations
through a two-stage stochastic program. The first-stage decisions
are optimal bids in the day-ahead market, with the option in the
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second stage to update operations accounting for wind output reali-
zation. The formulation is implemented in the GAMS software
package for a sample system to illustrate the financial value of
coordinated operations between the wind and pumped hydro units.
Denault et al. (2009) investigate the way in which wind power can
be used in conjunction with a large hydro reservoir system to mit-
igate shortfall risk due to drought conditions. Xie et al. (2012) de-
velop a model predictive control approach for managing a wind
farm with battery storage, using a moving horizon forecast to show
the financial benefit to both the storage system and the wind farm
operators. Kim and Powell (2011) develop a closed-form model for
determining optimal energy commitments in the spot market based
on distributions for exogenous spot price, wind forecast errors, and
storage levels. The model in this paper is perhaps most closely re-
lated to the approach taken by Kim and Powell, whose continuous
time model contains considerably more detail than our discrete time
model, and which admits closed-form solutions in the infinite time
horizon case. The fact that this model is much more stylized allows
for obtaining interesting closed-form results for finite time horizons
(in the “medium penalty” case described in this study).

This paper considers the market penalty for wind generator
shortfalls as an endogenous variable that can be manipulated to
encourage system-beneficial behavior in market participants pro-
viding wind energy. A stochastic dynamic programming approach
is also used here, for a stylized model of the wind energy and the
storage facility. Model analysis shows the importance of the inter-
play between forecasting ability, storage efficiency, and market
penalty that cannot be ignored if wind generators are to contribute
to energy markets in sustainable and beneficial manner.

The remainder of this paper is organized as follows: in section 2,
the dynamic programming approach to the optimal control problem
will be described. In section 3, the model is analyzed, followed by
a description of valuation of storage and forecasting accuracy in
section 4. Discussion and conclusions are provided in section 5.

Dynamic Programming Approach to Optimal
Control Problem

This section develops a stylized model of the decisions faced by
the operator of a joint wind/storage facility comprising a wind tur-
bine and a small battery storage to provide a basis for determining
the optimal control strategy. In each period, the wind turbine is
assumed to operate either at full capacity, generating energy with
value M, or not at all. The periods are indexed by k, counting from
the end of the planning horizon. The probability of there being
sufficient wind to run the wind turbine in the kth period is denoted
by pk.

The assumption is that the battery is large enough to hold
exactly the energy output generated by the wind turbine during
one period.

Before each period, a wind producer must decide whether to bid
electricity; if a decision to bid is made and the wind is blowing the
producer receives M, the price of electricity. On the other hand, if
the decision is to bid and the wind is not blowing, the producer
faces a penalty of xM. This simplified price model is designed to
capture either a situation where wind producers are paid a constant
high feed in tariff or in which a long-term contract is negotiated
between a wind producer and another party. If time-varying power
prices are available, either due to a time-of-use pricing schedule or
arising from a power market, a storage facility can obtain signifi-
cant additional value by engaging in arbitrage activities.

To increase the complexity of this problem slightly, assume
that the wind producer has access to one unit of battery storage.

At a given time period, the storage is either empty or full. The wind
producer pays γM for using the unit, but it can be used to help
avoid the potentially hefty penalty imposed in a case where a bid
decision has been made, but the wind doesn’t blow. Tables 1 and 2
show the benefit matrices associated with an initially empty battery,
as well as an initially full one, assuming a single period.

Let B denote the decision to bid, and N denote the decision not
to bid. E represents an empty battery, whereas F represents a full
battery. So VðF;B; kÞ describes the expected value of the wind/
storage system with k periods remaining, a full battery, and a firm
offer to supply one unit of power in the next time period; VðE;N; kÞ
describes the value of an empty facility with k periods remaining
and no offer of power, etc. Note that all such values assume optimal
operation (given the information possessed by the operator at the
time of bidding) in the future.

Assume further that at the end of the planning period, a full stor-
age facility is assigned a value of ð1 − γÞM and an empty facility a
value of zero:

VðE; 0Þ ¼ 0 VðF; 0Þ ¼ ð1 − γÞM

Note that in this case, these “initial” conditions are really ter-
minal conditions; in other words, this is a backward dynamic pro-
gramming formulation. It is common in dynamic programming
problems to begin with a time-reversal transformation in the for-
mulation of the problem, by always referring to the number of
periods remaining and by defining that as the time variable.

Given an empty battery with k periods remaining, the value of
each decision after one time period can be written as

VðE;N; kÞ ¼ pkVðF; k − 1Þ þ ð1 − pkÞVðE; k − 1Þ
VðE;B; kÞ ¼ pkM þ ð1 − pkÞð−xMÞ þ VðE; k − 1Þ

In other words, if the decision is not to bid, the battery gets filled
when the wind blows (a fraction pk of the time), otherwise nothing
happens (1 − pk of the time). If the decision is to bid,M is received
for the wind energy if it blows, but there is a penalty of −xM if it
is calm; in either event, the facility continues to be empty. Now,
just k − 1 periods remain, and so a value of VðE; k − 1Þ is retained.
One will bid if more expected value comes from that action than
from not bidding, so will bid when VðE;B; kÞ > VðE;N; kÞ. This
maximization carries through to the next time step, so choose
VðE; kÞ ¼ max½VðE;N; kÞ;VðE;B; kÞ�, denoted by VðE; kÞ.

A similar set of equations can be developed for the full
battery case, this time using VðF;N; kÞ and VðF;B; kÞ. This can be
written as

VðF;N; kÞ ¼ pkVðF; k− 1Þ þ ð1− pkÞVðF; k− 1Þ ¼ VðF; k− 1Þ
ð1Þ

VðF;B; kÞ ¼ pk½M þ VðF; k − 1Þ� ð2Þ

Table 1. Benefit Matrix: Empty Battery

State Bid Do not bid

Wind M ð1 − γÞM
No wind −xM 0

Table 2. Benefit Matrix: Full Battery

State Bid Do not bid

Wind M þ ð1 − γÞM ð1 − γÞM
No wind ð1 − γÞM ð1 − γÞM
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ð1 − pkÞmax½−xM þ VðF; k − 1Þ; ð1 − γÞM þ VðE; k − 1Þ� ð3Þ

If the decision is not to bid, then simply do nothing; if there
is wind, it cannot be stored because the battery is already full.
However we do receive VðF; k − 1Þ, representing the value of the
system given that it is full with k − 1 periods remaining. If the
decision is to bid, then it is not quite as simple. If there is wind,
sell the energy forM and retain full facility with value VðF; k − 1Þ.
The max() expression within VðF;B; k − 1Þ indicates that there are
two choices if there is no wind: pay a penalty and keep the battery
full, or use the energy stored in the battery to make a delivery com-
mitment. The purpose of a bid is to make the most money, so
write VðF; kÞ ¼ max½VðF;N; kÞ;VðF;B; kÞ�.

Collecting these results yields the following system of differ-
ence equations:

VðE;N; kÞ ¼ pkVðF; k − 1Þ þ ð1 − pkÞVðE; k − 1Þ ð4aÞ

VðE;B; kÞ ¼ pk½M þ VðE; k − 1Þ�
þ ð1 − pkÞ½−xM þ VðE; k − 1Þ� ð4bÞ

VðE; kÞ ¼ max½VðE;N; kÞ;VðE;B; kÞ� ð4cÞ

VðF;N; kÞ ¼ VðF; k − 1Þ ð4dÞ

VðF;B; kÞ ¼ pk½M þ VðF; k − 1Þ� þ ð1 − pkÞmax½ð1 − γÞM
þ VðE; k − 1Þ − xM þ VðF; k − 1Þ� ð4eÞ

VðF; kÞ ¼ max½VðF;N; kÞ;VðF;B; kÞ� ð4fÞ
with initial conditions

VðE; 0Þ ¼ 0 ð4gÞ

VðF; 0Þ ¼ ð1 − γÞM ð4hÞ

Equipped with this model, the next step is to determine the
optimal control strategy.

Model Analysis

Given the model system defined in the previous section, structural
results can be obtained and analyzed to provide various insights by
first examining the difference VðF; kÞ − VðE; kÞ. This difference is
crucial in determining this strategy. In fact, the following theorem
regarding this difference allows one, at least in the special case of
constant pk, to obtain the optimal operating strategy for any x:

VðF; kÞ − VðE; kÞ ¼ max½VðF;B; kÞ;VðF;N; kÞ�
−max½VðE;B; kÞ;VðE;N; kÞ� ð5aÞ

¼ maxfpk½M þ VðF; k − 1Þ�
þ ð1 − pkÞmax½−xM þ VðF; k − 1Þ; ð1 − γÞM
þ VðE; k − 1Þ�;VðF; k − 1Þg −maxfpk½M þ VðE; k − 1Þ�
þ ð1 − pkÞ½−xM þ VðE; k − 1Þ�;pkVðF; k − 1Þ
þ ð1 − pkÞVðE; k − 1Þg ð5bÞ

Now define nðkÞ ¼ ½VðF; kÞ − VðE; kÞ�=M. After some simple
manipulations, the result is

nðkÞ ¼ nðk − 1Þ þmaxf−ð1 − pkÞx;−ð1 − pkÞ
× ½nðk − 1Þ − ð1 − γÞ�;−pkg
−max½−xð1 − pkÞ;pknðk − 1Þ − pk� ð6aÞ

¼ nðk − 1Þ þmin½xð1 − pkÞ;pk − pknðk − 1Þ�
−minfxð1 − pkÞ; ð1 − pkÞ½nðk − 1Þ − ð1 − γÞ�;pkg ð6bÞ

Now let mðkÞ ¼ nðkÞ − ð1 − γÞ. With this, the following result
is easily obtained:

mðkÞ ¼ mðk − 1Þ þmin½xð1 − pkÞ;pkγ − pkmðk − 1Þ�
−min½xð1 − pkÞ; ð1 − pkÞmðk − 1Þ;pk�

Now examine the special case of constant p∶pk ¼ p for all k.
In this special case, the system of difference equations [Eq. (6)]
can be solved in closed form, which will yield many useful
insights. With constant p, the difference equation for mðkÞ has
the solution

mðkÞ ¼ min½γp; xð1 − pkÞ� ð7Þ

Solution of Constant p System

For the system of Eq. (6) with pk ¼ p∀k
VðF; kÞ − VðE; kÞ ¼ ð1 − γÞM þmin½pγM; ð1 − pkÞxM�;

∀ k ≥ 0 ð8Þ

Proof. By induction, divide into two cases on xð1 − pkÞ > γp
or vice versa, and lots of manipulations of min and max functions.
See Appendix I. Equipped with this theorem, the optimal control
can be stated.

Optimal Control for Constant p

1. If the wind generator bids and the wind doesn’t blow, it is
always better to empty the storage than pay a nonnegative
penalty, no matter how small.

2. Bidding is always optimal when the storage facility is full.
3. When empty, bid only when penalties are low relative to other

problem parameters; otherwise, do not bid.
To be precise, when empty, it is better to bid if and only if

γp > xð1 − pkÞ ð9Þ
All of these results are proved in Appendix II. The basic idea is

sketched here for point 1. From (9) with constant pk, it is better to
drain the storage rather than pay the penalty if

−xM þ VðF; k − 1Þ ≤ ð1 − γÞM þ VðE; k − 1Þ ∀ k ð10Þ
This may be cast in terms of mðkÞ ¼ ½VðF; kÞ − VðE; kÞ�=

M − ð1 − γÞ, in which form the result takes the simpler form of
using the storage if mðk − 1Þ < x. This result clearly holds, since
mðkÞ ¼ min½γp; xð1 − pkÞ�.

Write (10) to isolate x as follows: If

x < γp=ð1 − pkÞ ð11Þ
then bid when empty; otherwise, do not bid. Note that this decision
threshold scales linearly with γ. The value in not bidding comes
from the ability to fill the battery when the wind blows; this oppor-
tunity is less interesting when batteries are very lossy (large γ),
so larger penalties are required to force battery use. The decision
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threshold also scales with p: for all k ¼ 1; 2; 3 : : :p=ð1 − pkÞ is a
increasing function of p. This also makes sense; the more likely the
wind is to blow, the less risk taken by bidding, and the larger the
penalties need to be to induce the use of storage. Now, divide x into
three parameter regimes and examine each individually:

Small Penalties (x ≤ γp)
If x ≤ γp, then (11) is satisfied for all values of k. So it is always
optimal to bid when empty for these very small penalties. In this
case, the difference equations take a very simple linear form, and it
is easy to show that

VðE; kÞ ¼ kM½p − xð1 − pÞ� ð12Þ

VðF; kÞ ¼ kM½p − xð1 − pÞ� þ ð1 − γÞM þ xMð1 − pkÞ ð13Þ

in both cases for all k >¼ 0.

Large Penalties �x ≥ γp=�1 − p��
if x ≥ γp=ð1 − pÞ, then x ≥ γp=ð1 − pkÞ for all k ¼ 1; 2; 3; : : : ;
and it is never optimal to bid when empty (the penalties are just
too large). Here as well, the difference equations take a simple lin-
ear form, although different from their small-penalty counterparts.
It is also easy to show that

VðE; kÞ ¼ kpM½1 − γð1 − pÞ�ðk ≥ 0Þ ð14Þ

VðF; kÞ ¼ Mðkpþ 1Þ½1 − γð1 − pÞ� ð15Þ

where the latter relation only holds for k ≥ 1; when k ¼ 0;
VðF; 0Þ ¼ Mð1 − γÞ. It is interesting to note that the value func-
tions do not depend on x at all here. This does make sense because
the bidding structure is such that one never bids when there is any
danger in having to pay a penalty, so penalties are never paid.

Medium Penalties �γp < x < γp=�1 − p��
If γp < x < γp=ð1 − pÞ, then the outcome of the inequality in
(3.4) depends on k. For fixed γ and p, γp=ð1 − pkÞ is a decreasing
function of k. So it is possible that, for small values of k, x < γp=
ð1 − pkÞ but for larger values of k, the opposite is true. Now, choose
k� to be the largest value of k for which x < γp=ð1 − pkÞ holds.
In other words, k� is the largest integer less than z, where x ¼ γp=
ð1 − pzÞ, implying 1 − γp=x ¼ pz. Since x > γp, and since
γp here is positive, logarithms of both sides obtain: z lnp ¼ lnð1 −
γp=xÞ or

z ¼ lnðx − γpÞ − ln x
lnp

ð16Þ

So for medium penalties, the strategy is for k ≤ k�, bid, but
for k > k�, do not bid, where k� is the largest integer ≤z. It is fairly
easy to work out the analytic solution for VðE; kÞ and VðF; kÞ in
this case as well, by using the “always bid” solution for k ≤ k� and
then using the resulting VðE; k�Þ and VðF; k�Þ as new “initial con-
ditions” for a new “never bid” difference equation:

VðE; kÞ ¼ kM½p − xð1 − pÞ�; k < k� ð17Þ
and

VðF; kÞ ¼ kM½p − xð1 − pÞ� þ ð1 − γÞM þ xMð1 − pkÞ;
k < k� ð18Þ

when k > k� we can use the initial condition VðE; k�Þ ¼ k�M½p −
xð1 − pÞ� and write

VðE; kÞ ¼ k�M½p − xð1 − pÞ� þ ðk − k�ÞpM½1 − γð1 − pÞ�
¼ kpM − k�Mxð1 − pÞ − ðk − k�ÞMγpð1 − pÞ; k ≥ k�

Hence

VðF; kÞ ¼ VðE; kÞ þM½1 − γð1 − pÞ�
¼ kpM − k�Mxð1 − pÞ − ðk − k�ÞMγpð1 − pÞ
þM½1 − γð1 − pÞ� ð19Þ

Optimal Bidding Behavior with Time-Varying
Probabilities

The model developed here also is generally extensible to time-
varying probabilities of wind through a straightforward numerical
implementation of Eqs. (2.1)–(2.8). As an illustration, this study
uses deterministic diurnal wind probabilities from the northeastern
United States, estimated from the NREL Eastern Wind Integration
Study data set (Brower 2009) to consider the impact on opti-
mal strategy. Fig. 1 illustrates the change in the optimal bidding
strategy for various penalty values with a diurnal pattern of wind
probabilities.

Values of Storage and Forecast Accuracy

This section uses the previous model and optimal control strategy
to assess the value of storage to the wind producer, as well as the
value of “perfect” forecasts for wind producers with and without
storage. The authors were able to show that, under simplified con-
ditions, it is always optimal to bid when the storage facility is full.
Moreover, when penalties are small, it is optimal to bid when the
storage facility is empty and when penalties are large, it is optimal
not to bid when the storage facility is empty. When penalties are
moderate, it is optimal not to bid far from maturity and optimal
to bid closer to maturity. The point at which the decision switch
occurs can be determined.

Value of Storage under Constant Wind Probability

Now that it is clear how to operate a storage facility if one were
provided, how much value is being added by the storage? Consider
a simple wind turbine with no storage unit; the value of the turbine
with k periods remaining is

WðB; kÞ ¼ p½M þWðk − 1Þ� þ ð1 − pÞ½−xM þWðk − 1Þ�
¼ Wðk − 1Þ þ ½p − xð1 − pÞ�M

WðN; kÞ ¼ pWðk − 1Þ þ ð1 − pÞWðk − 1Þ
¼ Wðk − 1Þ

WðkÞ ¼ max½WðB; kÞ;WðN; kÞ�
¼ Wðk − 1Þ þMmax½p − xð1 − pÞ; 0�

WðkÞ ¼ kMmax½p − xð1 − pÞ; 0� ð20Þ
since Wð0Þ ¼ 0. From this, it is clear that if x < p=ð1 − pÞ, then
the optimal strategy is to always bid, yielding WðkÞ ¼ kM½p−
xð1 − pÞ�. If x > p=ð1 − pÞ, then it is optimal to never bid, with
WðkÞ ¼ 0. In other words, large penalties destroy the value of
wind in the absence of storage. Looking back at the solution
of the difference equation when penalties are large, the authors
are able to state that for a k period storage facility, the added
value from storage is
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kpM½1 − γð1 − pÞ�

under the assumption that the storage is initially empty, and

ðkþ 1ÞpM½1 − γð1 − pÞ�

under the assumption that the storage is initially full. Both equa-
tions imply that more wind is better and a more efficient (smaller
γ) storage facility is better. A storage facility that will last longer
is also better; this especially makes sense if the purchasing cost
of such a facility is considered.

With numerical estimates for assumptions about wind and bat-
tery efficiency, we can consider the relative value of battery storage
in each regime for x. A static probability of wind, though highly
stylized, is useful for considering the impact of market penal-
ties and can be estimated from historical data, for example
(Wind Energy Center 2009; U.S. National Renewable Energy
Laboratory 2010).

Also, γ can be estimated using a sodium sulfur battery as an
example (Baker 2008; Rydh and Sandén 2005a, b; Dufo-Lóez et al.
2009). Use a round-trip efficiency of β ¼ 80%, or in other words, a
fractional loss due to storage of γ ¼ 0.2. We also choose an average
power price of $0.04=kWh. The only parameter that an estimate
cannot be obtained for based on past data is x. Therefore, explore
the effect of x on the value of the wind-storage system.

When penalties are large, the value is unaffected by x; this is
because the optimal strategy avoids these penalties by not bid-
ding when the storage facility is empty. Fig. 2 shows VðF; kÞ and
VðE; kÞ as the number of periods remaining, k, increases, with
x ¼ 0.15. It is important to note that the result is the same for all
x > 0.128 since this is the point at which penalty avoidance is com-
plete and the generator will never bid when the storage unit is
empty. As expected, VðF; kÞ > VðE; kÞ∀ k. When penalties are

small, the value is affected by x. This is because the optimal strategy
is always to bid, and hence the penalty must be paid on calm days
when the storage facility is empty. Fig. 3 shows VðF; kÞ and
VðE; kÞ, k ¼ 100, for 0 ≤ x ≤ pγ ¼ 0.078. This figure shows that
as the penalty level increases, VðE; kÞ and VðF; kÞ decrease. As
expected, VðF; kÞ > VðE; kÞ∀ k. Finally, for medium penalties,
consider k > k�. As k� is dependent on x, it is assumed that
k ¼ k� þ 10. For the parameter set considered, medium penalties
include 0.078 < x < 0.6393, as shown in Fig. 4. When penalties
are near pγ ¼ 0.078, VðE; kÞ, and VðF; kÞ decrease more rapidly,
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Fig. 1. The decision to bid or not bid changes with shortfall penalty: With lowest penalty (x ¼ 0:025), the wind generator will bid regardless
of whether stored energy is available, except with lowest probability of wind in hours 8 through 10; when the penalty function is high (x ¼ 0:1),
the generator does not bid when storage is empty (dark filled squares remain at 0)
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Fig. 2. VðF; kÞ and VðE; kÞ as k increases: p ¼ 0.39, γ ¼ 0.2,
M ¼ 0.04
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in contrast to penalties near γp=ð1 − pÞ. In fact, as penalty levels
approach γp=ð1 − pÞ, values are no longer affected by the level
of penalty.

The results show that the “never bid when empty” condition,
xð1 − pÞ > γp, holds for penalty rates greater than about x ¼ 0.13.
In other words, severe nondelivery penalties are not required to
induce the use of storage. However a realistic wind storage model
will be much more detailed than the simple 4 parameter model
outlined in this paper.

Perfect Forecasts

It is very easy to value the wind farm with a perfect one-period
forecast. In that case, always bid when there is going to be wind
and, provided any positive penalty rate x > 0, never bid when the
wind won’t blow. This makes the storage useless—you never
need to store power in the first place. Time-varying power prices

can give value to storage, but that is outside the scope of
this model.

It is then clear thatWforecastðkÞ ¼ kMp if there are k periods left,
each one has the probability of generating power p, and the per-unit
sale price of the power isM. Eq. (20) gave the value of a pure wind
producer with no storage and no forecast skill. In that case, the
wind project had a value of either WðkÞ ¼ kM½p − xð1 − pÞ� if
x < p=ð1 − pÞ, or WðkÞ ¼ 0 if x ≥ p=ð1 − pÞ.

Value of a Perfect Forecast to a Wind Producer
with No Storage

Relative to the pure wind producer, then, the wind producer with a
perfect one-period forecast can extract the value of

FV ¼ WforecastðkÞ −WðkÞ ¼ kxMð1 − pÞ½x < p=ð1 − pÞ� ð21Þ
in the low-penalty case where x < p=ð1 − pÞ and extract a (higher)
value of

FV ¼ WforecastðkÞ −WðkÞ ¼ kMp½x ≥ p=ð1 − pÞ�
in the high-penalty case of x > p=ð1 − pÞ.

(It should be underlined that the dividing line between high
and low penalties is very different between the storage and no-
storage cases.)

Value of a Perfect Forecast to a Wind Producer
with Storage

Now let’s look at the value of the perfect-forecast case relative to
the value of the storage facility. In other words, what additional
value does a perfect forecast bring to the operator of the coupled
wind/storage project described earlier in this paper. There already is
a strong intuition that this value will be less than in the no-storage
case, since the storage allows penalties to be avoided much of
the time.

This value is divided into three cases, as described next.

Small Penalty

x < γp < p=ð1 − pÞ∶VðE; kÞ ¼ kM½p − xð1 − pÞ�
Here, FV ¼ kMxð1 − pÞ, the same as its value relative to the
no-storage case. The associated bidding rule here is always to bid,
whether empty or full. That means that the storage never will be
filled, so no behavior changes relative to not having it. Note that
if x ¼ 0 (no penalties for nondelivery), the forecast has no value
here, since simply always bidding will do the job just fine.

Medium Penalty

γp ≤ x < γp=ð1 − pÞ
Here

VðE; kÞ ¼ kpM − k�Mxð1 − pÞ − ðk − k�ÞMγpð1 − pÞ;
k > k� ¼ kM½p − xð1 − pÞ�; k < k�

where k� is the largest integer satisfying

k� < ½lnðx − pγÞ − ln x�=ðlnpÞ
This implies that

FV ¼ k�Mxð1 − pÞ þ ðk − k�ÞMγpð1 − pÞ; k > k�

FV ¼ kMxð1 − pÞ; k < k�

The rule here is to begin by bidding when full, not when empty,
but eventually just always bidding.
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Fig. 3. VðF; kÞ and VðE; kÞ for 0 ≤ x ≤ pγ: 0.1 cm p ¼ 0.39, γ ¼ 0.2,
M ¼ 0.04, k ¼ 100
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Fig. 4. VðF; kÞ and VðE; kÞ for pγ ≤ x ≤ γp=ð1 − pÞ: p ¼ 0.39,
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Large Penalty

x ≥ γp=ð1 − pÞ
Here

VðE; kÞ ¼ kpM½1 − γð1 − pÞ�

so

FV ¼ kpMγð1 − pÞ

Note that this means if storage is free, there is no value to a
perfect forecast. This makes sense because the associated bidding
rule here, “Always bid when full, never bid when empty,” will end
up giving the ability to (1) never pay a penalty and (2) never waste
any wind.

Of course, it is also of interest to determine the value of an
energy storage facility to an operator with access to an imperfect
wind forecast. The value of the storage in this case would be
below its value given no forecast, but above its value given a
perfect forecast. One way to think about valuing a storage given
an imperfect forecast is as follows. This forecast would divide
the operating hours of the facility into two groups. In the first,
when wind is forecast, the conditional probability of wind would
be higher than p; in the second, when calm is forecast, the con-
ditional probability of wind would fall below p. Because of the
strong serial independence assumption made in this paper, these
two sets could be considered nearly independently of one another
and each analyzed with with the results developed in this paper.
For instance, if a forecast was very accurate, it might be that
the conditional probability of wind given a wind forecast was
high enough that it was optimal always to offer power, making
a storage of no value, while the conditional probability of wind
given a forecast of calm was so high that it as optimal never to
offer power in the absence of storage. In this case, the storage
value would come only from a reduced number of hours relative
to a relatively low conditional wind probability. Working out
all the details of this process is the topic of current work by
the authors.

Discussion and Conclusions

Results analyzed in the previous section provide three primary in-
sights on the use of storage with wind generation. First, given stor-
age capabilities, the wind generator has incentive to behave in a
manner that is helpful to the system; to bid into the market when
there is likely to be wind and to drain storage to cover the shortfall if
the wind doesn’t manifest. This desirable behavior is achieved with
a remarkably small penalty level. With the introduction of a time-
varying probability of wind, akin to a diurnal weather pattern, the
strategy holds, with the modification that the wind generator will
bid into the market with an empty battery if the probability of wind
is sufficiently high relative to the penalty. Second, in the absence of
storage capability, the presence of a penalty would not achieve the
desired effect. In such a case, the wind generator will simply pay
the penalty if the resource is sufficient to make it economically via-
ble and shut down if it is not good enough to overcome the burden
of the penalty.

Finally, it is also shown that achieving better forecasting
accuracy improves the wind resource and the value of the wind
farm but also devalues the storage facility. There is no need for
storage if the forecast is very accurate, except in the case of time-
varying prices providing arbitrage opportunities, not discussed

here. It is important to note that though there is much re-
search interest and investment in improving battery efficiency,
the findings here are relatively insensitive to the efficiency
of the battery. Even a perfectly efficient battery will not change
the behavior of the wind generator in response to the penalty
structure.

In conclusion, with a relatively stylized model, we have gained
significant insight into the optimal strategy under a range of con-
ditions for wind, storage efficiency and shortfall penalties. This
model can be generalized to model more realistic behaviors with
numerical solutions. The importance of using the appropriate
market tools, such as shortfall penalty, cannot be underestimated.
This is a very efficient and important way to encourage wind gen-
erators to be constructive members of the power system, which will
become increasingly more important as the penetration of wind
increases in the future.

Appendix I. Proof of Theorem

Theorem 7.1. For the system of equations given below

VðE;N;kÞ ¼ pVðF;k − 1Þ þ ð1 − pÞVðE;k − 1Þ
VðE;B;kÞ ¼ p½M þ VðE;k − 1Þ� þ ð1 − pÞ½−xM þ VðE;k − 1Þ�
VðE;kÞ ¼ max½VðE;N;kÞ;VðE;B;kÞ�

VðF;N;kÞ ¼ VðF;k − 1Þ
VðF;B;kÞ ¼ p½M þ VðF;k − 1Þ�

þ ð1 − pÞmax½ð1 − γÞM þ VðE;k − 1Þ;
− xM þ VðF;k − 1Þ�

VðF;kÞ ¼ max½VðF;N;kÞ;VðF;B;kÞ�
with initial conditions

VðE;0Þ ¼ 0 VðF;0Þ ¼ ð1 − γÞM

the following result holds:

VðF;kÞ − VðE;kÞ ¼ ð1 − γÞM þmin½pγM;ð1 − pkÞxM�;
∀ k ≥ 0

In order to prove this theorem, first show that the difference
equation can be solved for mðkÞ defined here in closed form.

Lemma 7.1. Let VðF;kÞ − VðE;kÞ ¼ MmðkÞ þ ð1 − γÞM.
Then

mðkÞ ¼ mðk − 1Þ þmin½xð1 − pÞ; γp − pmðk − 1Þ�
−min½p;xð1 − pÞ;ð1 − pÞmðk − 1Þ�

mð0Þ ¼ 0 ðA1Þ

Proof. From the earlier result, now specialized for constant
pk ¼ p, we have

mðkÞ ¼ mðk − 1Þ þmin½xð1 − pÞ;pγ − pmðk − 1Þ�
−min½xð1 − pÞ;ð1 − pÞmðk − 1Þ;p�

With this in place, it is clear that if it can be shown that
mðkÞ ¼ min½pγ;ð1 − pkÞx� satisfies the equation of the lemma,
then the proof of the theorem is complete. To show this, use
induction.
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Proof. First, show that it holds for; k ¼ 1; i.e.,

mð1Þ ¼ mð0Þ þmin½xð1 − pÞ;γp�
−min½xð1 − pÞ;ð1 − pÞmð0Þ;p�

¼ 0þmin½xð1 − pÞ;γp� −min½xð1 − pÞ;0;p�
¼ min½xð1 − pÞ;γp�

which is clearly satisfied by mð1Þ ¼ min½γp;ð1 − p1Þx�. Next,
assume that it holds for k ≥ 1 and show that it holds for kþ 1.
We know that either xð1 − pkÞ ≤ γp or xð1 − pkÞ > γp. Let’s look
at each case separately.
1. Case 1:

xð1 − pkÞ ≤ γp, so mðkÞ ¼ xð1 − pkÞ
First, take

mðkþ 1Þ ¼ mðkÞ þmin½xð1 − pÞ;pγ − pmðkÞ�
−min½xð1 − pÞ; ð1 − pÞmðkÞ;p�

¼ xð1 − pkÞ þmin½xð1 − pÞ; γp − pxð1 − pkÞ�
−min½xð1 − pÞ; ð1 − pÞxð1 − pkÞ;p�

Now, write

min½xð1 − pÞ; γp − pxð1 − pkÞ�
¼ −pxð1 − pkÞ þmin½xð1 − pÞ þ pxð1 − pkÞ; γp�

and

min½xð1 − pÞ; ð1 − pÞxð1 − pkÞ;p�
¼ ð1 − pÞxð1 − pkÞ þmin½xð1 − pÞ − ð1 − pÞxð1 − pkÞ;

0;p − ð1 − pÞxð1 − pkÞ�

Therefore

mðkþ 1Þ ¼ xð1 − pkÞ − pxð1 − pkÞ − ð1 − pÞð1 − pkÞ
þmin½xð1 − pÞ þ pxð1 − pkÞ; γp�
−min½xð1 − pÞ − ð1 − pÞxð1 − pkÞ;
0;p − ð1 − pÞxð1 − pkÞ�

¼ min½xð1 − pkþ1Þ; γp�
−min½xð1 − pÞ − ð1 − pÞxð1 − pkÞ;
0;p − ð1 − pÞxð1 − pkÞ�

If it can be shown that min½xð1 − pÞ − ð1 − pÞ
xð1 − pkÞ; 0;p − ð1 − pÞxð1 − pkÞ� ¼ 0, then it is done.
Starting with the first term, simplify as follows:

xð1 − pÞ − ð1 − pÞxð1 − pkÞ ¼ xð1 − pÞ½1 − ð1 − pkÞ�
¼ xð1 − pÞpk>0

Moving on to the third term, note that because it has been
assumed that xð1 − pkÞ ≤ γp, then

−xð1 − pkÞ ≥ −γp − ð1 − pÞxð1 − pkÞ
≥ −ð1 − pÞγp

p − ð1 − pÞxð1 − pkÞ ≥ p − ð1 − pÞγp
¼ p½1 − ð1 − pÞγ� ¼ p2γ>0

Therefore

min½xð1−pÞ− ð1−pÞxð1−pkÞ;0;p− ð1−pÞxð1−pkÞ� ¼ 0

and finally,

mðkþ 1Þ ¼ min½xð1 − pkþ1Þ; γp� − 0

¼ min½xð1 − pkþ1Þ; γp�
2. Case 2:

xð1 − pkÞ > γp, so mðkÞ ¼ γp.
Now, take

mðkþ 1Þ ¼ mðkÞ þmin½xð1 − pÞ;pγ − pmðkÞ�
−min½xð1 − pÞ; ð1 − pÞmðkÞ;p�

¼ γpþmin½xð1 − pÞ; γp − p2γ�
−min½xð1 − pÞ; ð1 − pÞγp;p�

Because p > ð1 − pÞγp, it is clear that min½xð1 − pÞ;
ð1 − pÞγp;p� ≠ p. Therefore,

mðkþ 1Þ ¼ γpþmin½xð1 − pÞ; ð1 − pÞγp�
−min½xð1 − pÞ; ð1 − pÞγp�

¼ γp

The final question is, does min½xð1 − pkþ1Þ; γp� ¼ γp?
By the assumption in this paper, min½xð1 − pkÞ; γp� ¼ γp.
But it also is clear that

pkþ1 < pk − pkþ1 > −pk

1 − pkþ1 > 1 − pk

xð1 − pkþ1Þ > xð1 − pkÞ

Therefore, min½xð1 − pkþ1Þ; γp� ¼ γp and we are done.

Appendix II. Optimal Bidding Rules

Up to this point, this paper has proved that it is better to use the
storage than to pay a nonnegative penalty, no matter how small:
result 1. Now, this appendix proves result 2, about bidding when
the facility is full. Use that result to simplify VðF; kÞ ¼
max½VðF;B; kÞ;VðF;N; kÞ� to VðF; kÞ ¼ VðF;B; kÞ; in other
words, when full, a decision to bid should always be made.

Corollary 8.1. VðF;B;kÞ ≥ VðF;N;kÞ;∀ k.
Proof. Given the general model, as well as the previous

corollary, write
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VðF;B;KÞ−VðF;N;kÞ¼p½MþVðF;k−1Þ�
þð1−pÞ½ð1−γÞMþVðE;k−1Þ�
−VðF;k−1Þ

¼pMþð1−pÞfð1−γÞM
− ½VðF;k−1Þ−VðE;k−1Þ�g

¼pM−ð1−pÞmin½pγM;ð1−pk−1ÞxM�>0

giving the desired result VðF;B;kÞ > VðF;N;kÞ.In other words,
when full, it is always optimal to bid, regardless of x.The following
corollary determines the bidding rules for an empty storage facility.

Corollary 8.2. When empty, it is better to bid if and only
if γp > xð1 − pkÞ.

Proof. Write

VðE;B;kÞ − VðE;N;kÞ
¼ p½M þ VðE;k − 1Þ� þ ð1 − pÞ½−xM þ VðE;k − 1Þ�
− pVðF;k − 1Þ − ð1 − pÞVðE;k − 1Þ

¼ pM − p½VðF;k − 1Þ − VðE;k − 1Þ� − ð1 − pÞxM
¼ M½p − xð1 − pÞ� − p½ð1 − γÞM þmin½pγM;ð1 − pk−1ÞxM�
¼ M½γp − xð1 − pÞ� − pMmin½pγ;ð1 − pk−1Þx�
¼ M½γp − xð1 − pÞ� þ pMmax½−pγ; − xð1 − pk−1Þ�
¼ Mmax½γp − xð1 − pÞ − γp2;γp − xð1 − pkÞ�
¼ Mmax½ðγp − xÞ − pðγp − xÞ;γp − xþ xpkÞ�

If x < γp then −pðγp − xÞ < 0. Therefore,

VðE;B;kÞ − VðE;N;kÞ ¼ Mðγp − xÞ þMxpk

¼ M½γp − xð1 − pkÞ�

If γp < x, then this can be rewritten as

VðE;B;kÞ − VðE;N;kÞ ¼ Mmax½ð1 − pÞðγp − xÞ;γp − xþ xpkÞ�

The first term is certainly negative because x > γp, and the second
term is positive if γp > xð1 − pkÞ.

In both cases, if γp > xð1 − pkÞ, then it is better to bid, as
desired.
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