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Is Value Premium a Proxy for Time-Varying Investment 

Opportunities: Some Time Series Evidence 

Abstract 

 Recent authors argue that the value premium constructed from the cross-section of stocks 

is a proxy for investment opportunities. We show that this conjecture sheds light on the puzzling 

empirical risk-return tradeoff in the stock market across time. That is, in contrast with many 

early authors, we find that the stock market return is positively and significantly related to its 

conditional variance after controlling for its covariance with the value premium. The covariance, 

which is negatively correlated with stock variance, is positively and significantly priced as well. 

Therefore, by ignoring the effect of time-varying investment opportunities on the stock market 

return, the early specification might suffer from an omitted variables problem, which generates a 

downward bias in the estimate of the risk-return relation. Also, consistent with recent 

investment-based equilibrium models, we document a positive and significant relation between 

the value premium and its conditional variance over the post-1963 period. Overall, our empirical 

evidence suggests that the value premium might be a proxy for investment opportunities. 

Keywords: ICAPM, value premium, stock return predictability, realized volatility, and GARCH. 

JEL number: G1.
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 The capital asset pricing model (CAPM) developed by Sharpe (1964) and Lintner (1965) 

fails to explain the stock return data along two important dimensions. First, Fama and French 

(1993), for example, show that the CAPM does not account for the cross-section of stock returns, 

e.g., the value premium and the size premium.1 Second, Campbell (1987), Whitelaw (1994), and 

Brandt and Kang (2004), among many others, find a weak or negative risk-return tradeoff in the 

stock market across time, in contrast with the positive relation stipulated by the CAPM. One 

possible explanation is that the CAPM assumption of constant investment opportunities is 

unrealistic because financial economists have documented mounting evidence of predictable 

variations in stock market returns and variance. Therefore, the CAPM-related anomalies suggest 

that the stock market might act as a hedge against changes in investment opportunities, as 

illustrated in Merton’s (1973) intertemporal CAPM (ICAPM). 

 In particular, Fama and French (1995, 1996) argue that the value and size premiums 

move closely with investment opportunities and include them as additional risk factors in their 

three-factor model—perhaps one of the most influential and successful empirical asset pricing 

models. Consistent with Fama and French’s conjecture, Liew and Vassalou (2000) find that the 

value premium forecasts output growth in many industrial countries. Also, Campbell and 

Vuolteenaho (2004), Brennan, Wang, and Xia (2004), and Petkova (2005), among others, show 

that the value premium is correlated with innovations in their measures of investment 

opportunities and the ICAPM appears to explain the cross-section of stock returns.2 More 

importantly, recent authors, e.g., Gomes, Kogan, and Zhang (2003), and Zhang (2005), have 

                                                           
1 The value premium is the return on a portfolio that is long in stocks with a high book-to-market value ratio (value 
stocks) and short in stocks with a low book-to-market value ratio (growth stocks). The size premium is the return on 
a portfolio that is long in stocks with small capitalizations and short in stocks with big capitalizations. 
2 Jagannathan and Wang (1996), among others, argue that the CAPM holds conditionally but not unconditionally, 
and Lettau and Ludvigson (2001a), Petkova and Zhang (2005), and Ang and Chen (2005) find that the conditional 
CAPM helps explain the value premium. Lewellen and Nagel (2005), however, are skeptical about the explanatory 
power of the conditional CAPM. 
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developed investment-based equilibrium models, which have fully specified structures that link 

the value premium to aggregate and firm-specific productivity shocks. 

 The main purpose of this paper is to investigate whether the value premium constructed 

from the cross-section of stocks sheds light on the on-going debate about the risk-return tradeoff 

in the stock market. If it is a proxy for investment opportunities, the conditional excess stock 

market return, 1( )t tE R + , is determined by its conditional variance, 2
,M tσ , and its conditional 

covariance with the value premium, ,MH tσ : 

(1) 2
1 , ,( )t t M M t H MH tE R γ σ γ σ+ = + , 

where Mγ  and Hγ  are risk prices. The parameter Mγ  is usually interpreted as the coefficient of 

relative risk aversion and thus should be positive. As we show below, Hγ  also has an intuitive 

economic interpretation; in Campbell’s (1993) ICAPM, it is also positive if Mγ  is greater than 1. 

Similarly, the conditional value premium, 1( )t tE HML + , is determined by its conditional 

covariance with the stock market return, ,MH tσ , and its conditional variance, 2
,H tσ : 

(2) 2
1 , ,( )t t M MH t H H tE HML γ σ γ σ+ = + . 

 To illustrate the main results, we first estimate equations (1) and (2) using realized 

variances and covariances constructed using daily return data, as advocated by Merton (1980) 

and Andersen, Bollerslev, Diebold, and Labys (2003), among others. Consistent with early 

authors, we find that realized stock market variance has little predictive power for returns over 

the quarterly sample period 1963:Q4 to 2002:Q4, the longest sample available to us when the 

paper was first written.3 However, it becomes significantly positive after we include realized 

                                                           
3 We focus on quarterly data rather than monthly data because Ghysels, Santa-Clara, and Valkanov (2005) argue that 
realized variance is a function of long distributed lags of squared past returns. Andersen, Bollerslev, Diebold, and 
Wu (2004) also advocate for using quarterly data rather than monthly data in a similar exercise. However, following 
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covariance between the stock return and the value premium, which is also significantly positive. 

Figure 1 shows that the realized covariance (solid line) is negatively correlated with the realized 

stock variance (dashed line). Given that both Mγ  and Hγ  are found to be positive, the estimate of 

Mγ  is downward biased towards zero if we exclude the covariance term from equation (1). 

Therefore, by ignoring the effect of time-varying investment opportunities on stock market 

returns, the CAPM potentially suffers from an omitted variables problem. 

 Interestingly, we find that the value premium is positively and (marginally) significantly 

correlated with its conditional variance after controlling for its covariance with the stock return. 

This result appears to be consistent with Zhang’s (2005) model, in which the value premium 

moves countercyclically because of its positive loadings on systematic risk. In the joint 

estimation of equations (1) and (2), we fail to reject the ICAPM restrictions of no constant terms 

and the same risk prices across assets at the conventional significance level. Moreover, as 

expected, imposing these restrictions helps estimate Mγ  and Hγ  more precisely; they are both 

found to be positive and highly significant. Overall, our results are consistent with the conjecture 

that the value premium is a priced risk factor because it is a proxy for investment opportunities. 

 The realized volatility model might not provide an efficient estimate for the conditional 

variances and covariances; for example, it does not adequately account for the effect of long 

distributed lags of returns (see footnote 3). For robustness, we also estimate a more elaborate 

bivariate GARCH-in-mean model and find very similar results for the post-1963 monthly 

sample. Two flexible specifications have been considered: The asymmetric BEKK (ABEKK) 

model by Engle and Kroner (1995) and the asymmetric dynamic covariance (ADC) model by 

                                                                                                                                                                                           
the early authors, we use higher-frequency, e.g., monthly or weekly, data in the GARCH model. It should be noted 
that, unlike the simple realized volatility model, conditional variances and covariances are a weighted sum of 
squared past return innovations in the GARCH model. 
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Kroner and Ng (1998). For the ABEKK model, we fail to reject the ICAPM restrictions of no 

constant terms and the same risk prices across assets. In the preferred specification, Mγ  is found 

to be positive and highly significant, with a point estimate of 4.6 and a standard error of 1.1. The 

point estimate falls comfortably within the plausible range of 1 to 10 for the coefficient of 

relative risk aversion, as advocated by Mehra and Prescott (1985), among others. The parameter 

Hγ  is also found to be significantly positive, with a point estimate of 5.9 and a standard error of 

1.8. We obtain very similar estimates using the more complicated ADC model; the data are not 

supportive of the ICAPM restrictions, however. Overall, the GARCH estimation also provides 

strong support for the conjecture that the value premium is a proxy for investment opportunities. 

 The GARCH model also allows us to extend the analysis to the early period, July 1926 to 

December 1962, over which we have only monthly data. This period is particularly interesting 

because Campbell and Vuolteenaho (2004), among others, find that the value premium does not 

pose a challenge to the CAPM over the early period, in contrast with the modern (post-1963) 

period. Campbell and Vuolteenaho argue that the difference reflects a structural break in the 

value premium: For various reasons, it did not co-move with innovations in investment 

opportunities in the early period as much as in the modern period. Their results have two 

important implications for our empirical specifications over the early period. First, the 

covariance with the value premium is not priced, or Hγ  would be statistically insignificant. 

Second, the estimate of Mγ  is downward biased towards zero because of the omitted variables 

problem. These conjectures are largely consistent with our empirical evidence. The parameter 

Hγ  is found to be negligible and insignificant over the period July 1926 to December 1962; 

although Mγ  is still significantly positive, its point estimate of 2.5 is substantially smaller than 

the point estimate of 4.6 obtained from the modern period. 
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 Scruggs (1998) estimates a bivariate GARCH model using the long-term interest rate as a 

proxy for investment opportunities. However, his results are sensitive to the assumption of a 

constant correlation coefficient between stock market returns and the long-term interest rate 

(e.g., Scruggs and Glabadanidis [2003]). Guo and Whitelaw (2005) use the consumption-wealth 

ratio proposed by Lettau and Ludvigson (2001b) as a proxy for investment opportunities and find 

their results to be very similar to ours. For example, in their preferred specification (model 6 of 

Table 2), the point estimate of Mγ  is 4.9 and the standard error is 2.1. The striking similarities 

between the two papers reflect the fact that, as we show in this paper, the consumption-wealth 

ratio and the covariance between stock market returns and the value premium capture some 

common predictable variations in stock market returns. 

 Although our empirical evidence is consistent with the hypothesis that the value premium 

is a measure of investment opportunities, we cannot completely rule out that alternative 

explanations exist. Nevertheless, our analysis raises the bar for the competing theories by 

showing a close link between time-series and cross-sectional stock return predictability. In 

particular, while the link is well established in Merton’s ICAPM, it poses a challenge to the 

irrational pricing (e.g., Lakonishok, Shleifer, and Vishny [1994]) and data mining (e.g., 

MacKinlay [1995]) explanations for the value premium. 

 The remainder of the paper is organized as follows. We discuss the empirical 

specifications in Section I and present the estimation results of the realized volatility model in 

Section II.  The bivariate GARCH model is discussed in Section III and some concluding 

remarks are offered in Section IV. 

 

I. Empirical Specifications 
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 In Merton’s (1973) ICAPM, the conditional excess stock market return, 1( )t tE R + , is 

determined by its conditional variance, 2
,M tσ , and its covariances with the state variables, ,MF tσ : 

(3) 2
1 , ,( ) [ ] [ ]WW WF

t t M t MF t
W W

J W JE R
J J

σ σ+

− −
= + , 

where J W t F t t( ( ), ( ), )  is the indirect utility function with subscripts denoting partial derivatives,   

W t( )  is wealth, and F t( ) is a vector of state variables that describe investment opportunities. 

WW

W

J W
J

−  is a measure of relative risk aversion, which is usually assumed to be constant. 

Following Scruggs (1998), we also assume that WF

W

J
J
−  is a vector of constants. 

 In this paper, we assume that the value premium is a proxy for investment opportunities, 

i.e., t tF HML= . As mentioned in the introduction, we can motivate this specification using 

recent empirical evidence (e.g., Campbell and Vuolteenaho [2004], Brennan, Wang, and Xia 

[2004], and Petkova [2005]) and, especially, recent theoretical works (e.g., Gomes, Kogan, and 

Zhang [2003] and Zhang [2005]). Then it is straightforward to derive equation (1) from equation 

(3), with WW
M

W

J W
J

γ −
=  and WF

H
W

J
J

γ −
= . Equation (2) also follows directly from the ICAPM 

implication that the return on any asset is determined by its covariances with the stock market 

return and the state variables. 

 The intuition of our results can be easily illustrated using Campbell’s (1993) ICAPM. If 

stock returns are predictable, Campbell and Shiller (1988) show that we can decompose the 

unexpected stock return into shocks to cash flows, , 1CF tN + , and shocks to discount rates, , 1DR tN + : 

(4) 1 1 , 1 , 1( )t t t CF t DR tR E R N N+ + + +− = − . 



 7

Stock prices fall when there is a negative shock to cash flows or a positive shock to discount 

rates; however, the long-run effects of the two types of shocks are different. The positive 

discount-rate shock is associated with an improvement in investment opportunities, i.e., higher 

expected future stock returns. In contrast, investment opportunities do not change with the cash-

flow shock. Therefore, discount rates are a measure of investment opportunities in Campbell’s 

ICAPM, and the expected return on an asset, e.g., the market portfolio, is determined by its 

covariances with the stock market return ( 1tR + ) and the discount-rate shock ( , 1DR tN +− ): 

(5) 2
1 , , ,( ) ( 1)t t M M t M M DR tE R γ σ γ σ+ = + − , 

where , ,M DR tσ  is the conditional covariance between 1tR +  and , 1DR tN + . Substituting equation (4) 

into equation (5), we obtain 

(6) 2 2
1 , , , ,( ) ( 1)t t M CF t DR t M CF DR tE R γ σ σ γ σ+ = + − + , 

where 2
,CF tσ  is the conditional variance of the cash-flow shock, 2

,DR tσ  is the conditional variance 

of the discount-rate shock, and , ,CF DR tσ is the conditional covariance between the cash-flow and 

discount-rate shocks. Equation (6) shows that the risk price of the cash-flow shock is equal to the 

coefficient of relative risk aversion, Mγ , and the risk price of the discount-rate shock is equal to 

1. Therefore, if Mγ  is greater than 1 (as found in this paper), the stock market risk is overstated 

in the CAPM, in which we assume that the risk prices are the same for both types of shocks. The 

second term in the RHS (right hand side) of equation (5) corrects for this difference in risk prices 

(note that , ,M DR tσ  is negative). 

 Similarly, Campbell and Vuolteenaho (2004) argue that the distinction between the cash-

flow and the discount-rate shocks is important for understanding why the CAPM fails to explain 
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the value premium in the post-1963 period. To illustrate their argument, we decompose the 

unexpected value premium into the discount-rate and the cash-flow shocks: 

(7) 1 1 , , 1 , , 1( )t t t H DR DR t H CF CF tHML E HML N Nβ β+ + + +− = + . 

Campbell and Vuolteenaho show that growth stocks tend to have a higher market beta than value 

stocks because the former has higher durations and thus is more vulnerable to discount-rate 

shocks (e.g., Cornell [1999]). That is, the value premium is closely correlated with the discount-

rate shock, or ,H DRβ  is high in equation (7). However, the value premium is positive because of 

its positive loadings on the cash-flow shock, which, as mentioned above, has a higher risk price 

than the discount-rate shock if Mγ  is greater than 1. Therefore, the CAPM fails to explain the 

value premium because it assigns the same risk prices for the two types of shocks. As shown 

below, we confirm these results in our empirical analysis, although our approach is different 

from Campbell and Vuolteenaho. Note that equation (7) is also the main assumption adopted in 

Lettau and Wachter (2005), who develop an equilibrium model to explain the value premium.4 

 We assume that the high-minus-low portfolio is well diversified. This assumption seems 

reasonable because, to construct the value premium (as analyzed in this paper), Fama and French 

(1996) use all CRSP common stocks for which the accounting data from COMPUSTAT are 

available. Also, as shown in Table 1, the quarterly standard deviation of the value premium is 

5.9%, compared with 8.7% for the stock market return.5 

                                                           
4 Our two-factor ICAPM nests the conditional CAPM by Zhang (2005) as a special case because Zhang assumes 
that the cash-flow and the discount-rate shocks are perfectly correlated with each other. However, it seems 
straightforward to extend his model to a two-factor setting by adding an independent discount-rate shock, as in 
Lettau and Wachter (2005). Also, the economic mechanism for a positive value premium uncovered in this paper is 
the same as that proposed by Zhang. That is, the positive value premium reflects its positive loadings on 
fundamental (i.e., cash flows) risk, especially during business downturns. 
5 If the value premium has an idiosyncratic component, the only modification that we need to make is to subtract the 
idiosyncratic volatility from the value premium volatility in equation (9). This modification implies a non-zero 
constant term in equation (9); however, as shown in our empirical analysis, we fail to reject the null hypothesis that 
the constant term is zero in most cases, suggesting that the idiosyncratic component might be small. 
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 Substituting equation (7) into equation (5), we obtain 

(8) ,2
1 , , , ,

, ,

1( ) ( 1) ( 1) H CF
t t M M t M MH t M M CF t

H DR H DR

E R
β

γ σ γ σ γ σ
β β+ = + − − − . 

If the value premium is perfectly correlated with the discount rate shock (i.e., ,H CFβ  is equal to 

zero), equation (8) is exactly the same as equation (1). Moreover, as shown in Table 5 of 

Campbell and Vuolteenaho (2004), ,H CFβ  is much smaller than ,H DRβ  in the post-1963 sample. 

Therefore, omitting the third term in the RHS of equation (8) is likely to have a relatively small 

effect. In this case, equation (1) holds approximately. Similarly, it is straightforward to show: 

(9) ,2
1 , , , ,

, ,

1( ) ( 1) ( 1) H CF
t t M MH t M H t M H CF t

H DR H DR

E HML
β

γ σ γ σ γ σ
β β+ = + − − − . 

Equation (9) is (approximately) equivalent to equation (2) if ,

,

H CF

H DR

β
β

 is negligible. Note that the 

second term in the RHS of equation (9) reflects the fact that the discount-rate shock has a lower 

risk price than the cash-flow shock. Therefore, our main empirical specification is: 

(10) 
2

1 , ,

2
1 , ,

( )

( )
t t M MM M t HM MH t

t t H MH MH t HH H t

E R

E HML

α γ σ γ σ

α γ σ γ σ
+

+

= + +

= + +
, 

and the ICAPM requires 0M Hα α= = , MM MH Mγ γ γ= = , and 
,

1( 1)HM HH H M
H DR

γ γ γ γ
β

= = = − . 

Since ,H DRβ  is found to be positive in Campbell and Vuolteenaho, Hγ  is positive if and only if 

Mγ  is greater than 1. Also, Hγ  is constant if ,H DRβ  is constant. 

 Equation (10) holds only approximately if the value premium is not perfectly correlated 

with the discount-rate shock. To partially address this issue, we make two additional simplifying 
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assumptions: The two types of shocks in equation (4) are uncorrelated; and the betas in equation 

(7) are constant.6 Therefore, equations (6) and (9) imply 

(11)   
2

1 ,
2

, ,1 ,

1Mt CF t
t

M H CF H DRt DR t

R
E

HML
γ σ

γ β β σ
+

+

⎡ ⎤⎡ ⎤⎡ ⎤
= ⎢ ⎥⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. 

Equations (4) and (7) imply: 

(12) 
2 2

, ,
2 22 2

, ,, ,

1 1M t CF t

H CF H DRH t DR t

σ σ
β βσ σ

⎡ ⎤ ⎡ ⎤⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦

. 

If the matrix 2 2
, ,

1 1

H CF H DRβ β
⎡ ⎤
⎢ ⎥
⎣ ⎦

 is not singular, equations (11) and (12) imply 

 (13) 
_1 2

1 ,
2 2 2

, , , ,1 ,

1 1 1Mt M t
t

M H CF H DR H CF H DRt H t

R
E

HML
γ σ

γ β β β β σ
+

+

⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. 

Equation (13) shows that, under moderate conditions, the conditional stock market return and the 

value premium are linear functions of their conditional variances. As shown below, we find that, 

as expected, equation (13) appears to provide a better description for the data than does equation 

(10). 

 The ICAPM suggests that we should use variables that forecast stock market returns as 

proxies for investment opportunities; however, it provides little guidance for the choice of the 

stock return predictors. Also, innovations in the state variables are not directly observable and 

Campbell and Vuolteenaho (2004), for example, must rely on some admittedly ad hoc 

assumptions to identify them. Therefore, although more defendable than an empirical APT 

model, the empirical ICAPM is also potentially sensitive to variations in these specifications 

(see, e.g., Chen [2003] and Chen and Zhao [2005]). In contrast, by directly linking the value 

                                                           
6 The first assumption is consistent with the empirical evidence by Campbell and Vuolteenaho (2004), who also 
assume that betas are constant over various samples. 
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premium to investment opportunities, as suggested by recent investment-based equilibrium 

models (e.g., Zhang [2005]), we do not need to identify the priced state variables and their 

innovations. Our specification thus is complementary to that adopted by Campbell and 

Vuolteenaho (2004), among others; also, it allows us to address some related issues, e.g., the 

risk-return tradeoff in the stock market across time. 

As mentioned in footnote 3, we use quarterly data for the realized volatility model and 

monthly data for the GARCH model. For comparison, we conduct Monte Carlo simulations by 

assuming that daily returns follow a bivariate ABEKK process, as estimated from daily data. Our 

preliminary results suggest that, while both models are reasonably reliable for the sample size 

used in this paper, the point estimates of risk prices obtained from the GARCH model appear to 

be closer to the parameters set in the simulation than those obtained from the realized volatility 

model. Of course, although the simulation results are suggestive, they should be interpreted with 

caution because we do not know the true data-generating process. In particular, French, Schwert, 

and Stambaugh (1987) argue that while full information likelihood estimators such as GARCH 

are potentially more efficient, they are not as robust to model misspecification as instrumental 

variable models. Also, the realized volatility model allows us to compare the value premium with 

other potential measures of investment opportunities proposed by early authors. Therefore, in 

this paper, we follow French, Schwert, and Stambaugh and present estimation results obtained 

from both the realized volatility model and the GARCH model. 

 

II. Realized Volatility Model 
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 We obtain daily and monthly data of the Fama and French three factors from Professor 

Ken French at Dartmouth College.7 When the paper was first written, daily data were available 

over the period July 1963 to December 2002 and monthly data were available over the period 

July 1926 to February 2004. Following Merton (1980), among many others, we use the sum of 

the squared daily returns in a quarter as a measure of realized variance. The realized covariance 

is the sum of the cross-product of daily excess stock market returns and the value premium.8 

Note that we use simple returns in the empirical analysis and construct quarterly simple returns 

by aggregating monthly returns through compounding. 

In Figure 1, we plot realized stock market variance, 2
,M tv  (dashed line), along with 

realized covariance between the stock market return and the value premium, ,MH tv  (solid line). 

Note that 2
,M tv  rose dramatically during the 1987 stock market crash but reverted to the normal 

level shortly after. Many authors, e.g., Schwert (1990), argue that the 1987 crash is unusual in 

many ways. Unless otherwise indicated, we replace realized variance for 1987:Q4 with the 

second largest observation in our sample, as in Campbell, Lettau, Malkiel, and Xu (2001). ,MH tv  

is almost always negative and exhibits substantial fluctuations across time: Its absolute value 

tends to be relatively high just before or during business recessions (dated by the National 

Bureau of Economic Research), as denoted by the shaded areas. As mentioned above, the two 

variables in Figure 1 usually move in opposite directions. Similarly, as shown in Figure 2, 

realized variance of the value premium, 2
,H tv  (solid line), is also negatively related to ,MH tv  

(dashed line). Lastly, Figure 3 shows that, while realized variance of the stock market return 

(dashed line) is closely related to realized variance of the value premium (solid line), the 

                                                           
7 We downloaded the data from his website: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french. 
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correlation is not perfect possibly because the stock market return and the value premium have 

different loadings on the cash-flow and discount-rate shocks. 

Table 1 presents summary statistics for the excess stock market return and the value 

premium as well as their realized variances and covariance over the period 1963:Q4 to 2002:Q4. 

The excess stock market return, tR , is negatively related to the value premium, tHML , with a 

correlation coefficient of –0.48. Consistent with Figures 1 to 3, panel A also shows that 2
,M tv , 

2
,H tv , and ,MH tv  are closely related to each other; however, the correlation is far from being 

perfect. Lastly, panel B shows that the three variance and covariance measures exhibit 

substantial persistence: The autocorrelation coefficients are 0.56, 0.72, and 0.55 for 2
,M tv , 2

,H tv , 

and ,MH tv , respectively. Therefore, realized variance and covariance are good predictors of their 

future levels. 

 

A. Estimation of Merton’s ICAPM 

 We can rewrite equation (10) in the realized return form and use realized variances and 

covariances as proxies for their conditional values: 

(14) 
2

1 , , , 1

2
1 , , , 1

t M MM M t HM MH t M t

t H MH MH t HH H t H t

R v v

HML v v

α γ γ ε

α γ γ ε
+ +

+ +

= + + +

= + + +
, 

where , 1M tε +  and , 1H tε +  are shocks to the stock return and the value premium, respectively. We 

present the GMM (generalized methods of moments) estimation results in Table 2. 

 We first discuss the stock return equation, as reported in panel A of Table 2. Row 1 

replicates the familiar result that realized stock market variance, 2
,M tv , has weak forecasting 

                                                                                                                                                                                           
8 As in French, Schwert, and Stambaugh (1987), we find essentially the same results by correcting the serial 
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power for the excess stock market return, 1tR + : Its coefficient is positive but only marginally 

significant, with an adjusted R-squared of 1.5%. However, it remains positive and becomes 

significant at the 1% level after we control for the realized covariance, ,MH tv (row 2). 

Interestingly, the effect of ,MH tv  is also significantly positive, and the adjusted R-squared 

increases to 4.6%. Our results suggest a classic omitted variables problem. Note that 2
,M tv  and 

,MH tv  are both positively related to 1tR + , although they are negatively related to each other (Table 

1). Therefore, the estimate of MMγ  is biased downward towards zero if we do not control for 

,MH tv , as in row 1. 

 Similarly, as shown in row 1 of panel B, Table 2, realized variance of the value premium, 

2
,H tv , is not significantly correlated with the one-quarter-ahead value premium, 1tHML + . 

However, its coefficient becomes marginally significant after we control for the covariance, 

,MH tv  (row 2). Given that 2
,H tv  and ,MH tv  are both positively related to the value premium (row 2) 

but negatively correlated with each other (Table 1), these results again suggest an omitted 

variables problem. 

 In row 3 of Table 2, we estimate the two equations jointly: We use a constant, 2
,M tv , and 

,MH tv  as instrumental variables for the stock return equation and a constant, 2
,H tv , and ,MH tv  for 

the value premium equation. Thus the equation system is just-identified and the point estimates 

are identical to those reported in row 2. Note that from row 3 on, we report the R-squared rather 

than the adjusted R-squared (as in rows 1 and 2) in the column under R 2 . We impose the 

restrictions that the constant terms are zero in both equations and report the results in row 4. The 

                                                                                                                                                                                           
correlation in daily return data. For brevity, these results are not reported here but are available upon request. 
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restrictions can be tested using Hansen’s (1982) J-test, which has a chi-squared distribution with 

2 degrees of freedom. The J-test statistic is 1.14, indicating that the restrictions are not rejected at 

the 50% significance level. As expected, imposing ICAPM restrictions also improves the 

estimation efficiency, and, in particular, the effect of 2
,H tv  now becomes significant at the 5% 

level in the value premium equation. In row 5, we impose the restrictions that the risk prices are 

equal across assets; they are not rejected and the risk prices are found to be significantly positive. 

Lastly, we impose the restrictions of no intercepts and the equal risk prices across assets and 

report the results in row 6. Again, the restrictions are not rejected and the risk prices are found to 

be positive and highly significant. Overall, our results suggest that, as argued by Campbell and 

Vuolteenaho (2004) and Zhang (2005), the value premium is a proxy for investment 

opportunities. 

 Early authors, e.g., Fama and French (1989) and Campbell (1987), find that the dividend 

yield, the default premium, the term premium, and the stochastically detrended risk-free rate 

forecast stock market returns. Ferson and Harvey (1999) show that these variables also have 

predictive power for the value premium. One possibility is that they co-move with realized 

variance and covariance in equation (14) at the business-cycle frequency. To address this issue, 

we include them as instrumental variables, in addition to those used in row 6 of Table 2. Row 7 

shows that the model is not rejected at the 10% significance level, indicating that the stock return 

predictability documented by early authors is indeed consistent with the ICAPM. 

 Recently, Lettau and Ludvigson (2001b) argue that the consumption-wealth ratio, tCAY , 

is a strong predictor of stock market returns. If we also add tCAY  to our instrumental variable set 

(row 8, Table 2), the model is not rejected only at the 1% significance level; the other results, 

however, are very similar to those reported in rows 6 and 7. Therefore, again, our results suggest 
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that the value premium reflects intertemporal pricing, although it might be a noisier measure of 

investment opportunities than other stock return predictors proposed in the literature. 

 As shown in Figures 1 through 3, stock volatility rose to a high level in the last few years 

of our sample, during which stock prices first increased sharply and then collapsed with the burst 

of the technology bubble. To investigate whether this seemingly unusual episode has any special 

effect on our results, we also analyze a shorter sample spanning the period 1963:Q4 to 1997:Q4 

and report the results in rows 9 and 10 of Table 2, which have the same specifications as those in 

rows 7 and 8, respectively. The results are very similar to those obtained using the full sample. 

 

B. Forecasting Stock Market Returns 

 Using a relatively recent sample, Lettau and Ludvigson (2001b) show that the 

stochastically detrended risk-free rate, tRREL , and the consumption-wealth ratio, tCAY , are 

strong predictors of stock market returns. These variables also subsume the information content 

of many commonly used predictors, including the term premium, the default premium, and the 

dividend yield. According to Merton’s ICAPM, e.g., equation (3), tRREL  and tCAY  forecast 

returns because they co-move with either stock market variance or the covariance between the 

stock market return and investment opportunities. Motivated by this intuition, Guo and Whitelaw 

(2005) find a positive risk-return relation after controlling for tRREL  and tCAY  as proxies for 

the covariance term. Also, Guo and Savickas (2005) find that a measure of value-weighted 

idiosyncratic volatility, tIV , also forecasts stock market returns when combined with stock 

market variance. Guo and Savickas interpret tIV  as a proxy for realized variance of an omitted 

risk factor, for example, realized variance of the value premium in equation (13). Therefore, if 
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the value premium is indeed a priced risk factor, the forecasting abilities of ,MH tv  might be 

related to those of tRREL , tCAY , and tIV . We address this issue in Table 3. 

 As shown in row 1 of Table 3, the forecasting power of 2
,M tv and ,MH tv  is essentially 

unchanged in the presence of tRREL , of which the coefficient is significantly negative, as found 

by many early authors. In contrast, ,MH tv  loses the predictive power after we control for tCAY  

(row 2) or tIV  (row 3), while the effect of 2
,M tv  remains positive and highly significant. 

 The relatively weak forecasting power of ,MH tv  (when tCAY  or tIV  is included) might 

reflect the fact that the value premium is not perfectly correlated with the shock to discount rates 

or investment opportunities. For example, the third term in the RHS of equation (8) is not 

negligible. To address this issue, we forecast stock market returns using 2
,H tv  instead of ,MH tv , as 

suggested by equation (13). As shown in row 4 of Table 3, the coefficients of 2
,M tv  and 2

,H tv  are 

both highly significant, with the adjusted R-squared of 7.8%—a noticeable increase from 4.6% 

reported in row 2 of Table 2. Nevertheless, the effect of 2
,H tv  again becomes insignificant at the 

5% level after we control for tCAY  (row 6) or tIV  (row 7). Overall, our results indicate that the 

value premium appears to contain important information about investment opportunities. Also 

note that the close link between the value premium and tCAY  and tIV  strongly suggests that their 

forecasting power for stock returns reflects intertemporal pricing and should not be fully 

attributed to data mining or irrational pricing.9 

                                                           
9 Various factors might explain the relatively weaker performance of the value premium. For example, Fama and 
French (1996) argue that the value premium is only an empirical risk factor and does not explain the momentum 
effect documented by Jegadeesh and Titman (1993). Also, in Zhang’s (2005) model, the conditional value premium 
is a nonlinear function of the priced state variable (Figure 4) and thus the correlation between the two might not be 
perfect. In contrast, tCAY , for example, might be a better measure of investment opportunities because it is 
motivated directly from economic theories. 
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 In row 4 of Table 3, the coefficient of 2
,H tv  is negative, while the coefficient of 2

,M tv  is 

positive. This is because 2
,H tv  forecasts stock market returns due to its negative co-movements 

with ,MH tv  (Table 1), which in turn is positively related to stock market returns. This result helps 

explain the seemingly puzzling negative relation between tIV  and stock returns documented by 

Guo and Savickas (2005). Our result suggests that the negative relation reflects the fact that, as 

advocated by Guo and Savickas, tIV  is a proxy for the variance of an omitted risk factor.10 

 

C. Out-of-Sample Forecast 

Bossaerts and Hillion (1999) and Goyal and Welch (2003), among others, have 

challenged the robustness of the in-sample evidence of stock return predictability. In particular, 

they show that many commonly used forecasting variables have negligible out-of-sample 

predictive power. Ferson, Sarkissian, and Simin (2003), among others, have also cautioned about 

the spurious regression and data mining. To address these issues, we conduct the out-of-sample 

analysis in this subsection. In particular, we use three statistics to compare the out-of-sample 

performance of the model using 2
,H tv  and 2

,M tv  as predictors (as in row 4, Table 3) with a 

benchmark of constant excess stock returns. First is the mean-squared forecasting error (MSE) 

ratio. Second is Clark and McCracken’s (2001) encompassing test (ENC-NEW); this test 

compares the null hypothesis that the benchmark model incorporates all the information about 

the next quarter’s excess stock market return against the alternative hypothesis that our 

forecasting variables provide additional information. Third is McCracken’s (1999) test of equal 

forecast accuracy (MSE-F). In the MSE-F test, the null hypothesis is that the benchmark model 

                                                           
10 We show the link between the idiosyncratic volatility and the volatility of the omitted risk factor in an appendix, 
which is available upon request. 
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has an MSE less than or equal to that of the augmented model compared against the alternative 

hypothesis that the augmented model has a smaller MSE. Clark and McCracken (2001) show 

that the latter two tests have the best overall power and size properties among a variety of tests 

proposed in the literature. 

 We report the results of the out-of-sample forecast tests in Table 4. As in Lettau and 

Ludvigson (2001b), we use the first third of the observations for the initial in-sample estimation 

and form the out-of-sample forecast recursively in the remaining sample.11 That is, we use the 

observations over the period 1963:Q4 to 1976:Q4 to make the forecast for 1977:Q1 and update 

the sample to 1977:Q1 to forecast the return for 1977:Q2 and so forth. The column AMSE / BMSE  

is the MSE ratio of the augmented model to that of the benchmark model. The column Asy. CV 

reports the 95% critical value from the asymptotic distribution provided by Clark and 

McCracken (2001) and McCracken (1999). The column BS. CV is the 95% critical value 

obtained from bootstrapping, as in Lettau and Ludvigson (2001b). Consistent with the in-sample 

regression results, we find that the augmented model has a smaller MSE than the benchmark 

model of constant stock returns. More importantly, both the ENC-NEW and MSE-F tests reject 

the null hypothesis that 2
,H tv  and 2

,M tv  provide no information about future stock returns at the 5% 

significance level using both the asymptotic and bootstrapping critical values. 

 For robustness, in Figure 4 we plot the recursive MSE ratio (of the augmented model to 

the benchmark model of constant returns) through time. The horizontal axis denotes the starting 

forecast date; for example, the value corresponding to March 1977 is the MSE ratio over the 

forecast period 1977:Q1 to 2002:Q4. We choose the range 1977:Q1 to 1997:Q4 for the starting 

                                                           
11 The ratio of the number of observations used in the out-of-sample forecast to that used in the initial in-sample 
regression is a crucial parameter for the critical values of the last two tests. Clark and McCraken (2001) provide the 
critical values for only selected values of this ratio. Following Lettau and Ludvigson, we set it to be 2 so that we can 
obtain the critical value from Clark and McCraken. Nevertheless, we find very similar results using various samples. 
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forecast date; therefore, we utilize at least 20 observations in the calculation of MSE. As shown 

in Figure 4, the MSE ratio is always less than 1, indicating that the out-of-sample predictive 

power of 2
,H tv  and 2

,M tv  is not sensitive to any particular sample period. 

 

D. Forecasting the Value Premium 

Consistent with equation (2), 2
,H tv  has some forecasting power for the value premium 

when combined with ,MH tv  (row 2 of Table 2). This result indicates that predictable variations in 

the value premium documented by some early authors (e.g., Ferson and Harvey [1999] and Guo 

and Savickas [2005]) might be consistent with intertemporal pricing. To address this issue, in 

Table 5, we compare the forecasting power of realized variances and covariance with alternative 

measures of investment opportunities, namely, tRREL , tCAY , and tIV .12  As shown in row 1, the 

effect of 2
,H tv  remains positive and marginally significant after controlling for tRREL . However, 

the effect of 2
,H tv  becomes insignificant after we control for tCAY  (row 2) and tIV  (row 3), both 

of which have insignificant effects as well. 

Row 4 of Table 5 presents the regression results using 2
,M tv  instead of ,MH tv  in the 

forecasting equation, as suggested by equation (13). Consistent with the results reported in Table 

3 for stock market returns, the alternative specification appears to provide a better fit for the 

value premium as well. Now the effect of 2
,H tv  is positive and significant at the 5% level; the 

effect of 2
,M tv  is negative and also significant at the 5% level. Also, the adjusted R-squared is 

4.8%, which is noticeably higher than the 3.6% reported in row 2 of Table 2. The coefficient of 
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2
,M tv  is negative because of its negative correlation with ,MH tv  (Table 1), which in turn is 

positively correlated with the value premium. 

The forecasting power of 2
,H tv (as in row 4 of Table 5) is very similar to that of tIV , as 

reported by Guo and Savickas (2005). These authors show that tIV  and  2
,M tv  jointly have strong 

predictive power for the value premium; moreover, while 2
,M tv  is negatively correlated with the 

one-quarter-ahead value premium, the relation is positive for tIV . To formally address this issue, 

we also include tIV  in the forecasting equation, together with 2
,H tv  and 2

,M tv . As shown in row 7, 

while the coefficient of 2
,M tv  remains significantly negative, the coefficients of both tIV  and 

2
,H tv become insignificant, indicating that the two variables indeed capture common variations in 

the value premium. This result should not be too surprising because, as argued by Guo and 

Savickas (2005), by construction, tIV  is a proxy for realized variance of an omitted risk factor 

(e.g., the realized variance of the value premium, as in equation (13)). The positive relation 

between the value premium and tIV  or 2
,H tv  is also consistent with recent investment-based 

equilibrium models (e.g., Gomes, Kogan, and Zhang [2003] and Zhang [2005]), in which these 

variables move countercyclically. However, in contrast with tIV , controlling for tRREL  (row 5) 

or tCAY  (row 6) does not affect our results in any qualitative manner. 

  

E. Robustness 

                                                                                                                                                                                           
12 The term premium, the default premium, and the dividend yield (as used by Ferson and Harvey [1999]) do not 
provide additional information about the future value premium, and including them does not change our results in 
any qualitative manner. To conserve space, these results are not reported here but are available upon request. 
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 Fama and French construct the value premium using value weighting. In their Table 5, 

Campbell and Vuolteenaho (2004) find that growth stocks have a disproportionately higher 

discount-rate beta than value stocks do in the post-1963 sample, even after controlling for size. 

Therefore, we expect to find very similar results using the value premium constructed with both 

small and big stocks. To investigate this issue, we obtain from Kenneth French the daily return 

data for six portfolios, which are the intersection of two independent sorts: Size (big and small) 

and the book-to-market value ratio (high, median, and low). As shown in Table 6, we find 

essentially the same results using realized variance of the value premium constructed from small 

and large stocks. We also find that 2
,M tv  and 2

,H tv  forecast the Fama and French 25 portfolios 

sorted by size and the book-to-market value ratio; for brevity, these results are not reported here 

but are available upon request. 

 

III. Multivariate GARCH Model 

 Many authors, e.g., Christensen and Prabhala (1998), Fleming (1998), and Guo and 

Whitelaw (2005), find that realized variance is not an efficient measure of conditional variance. 

Given the appealing economic intuition, our results are unlikely to be affected by this problem in 

any qualitative manner. The point estimates of the ICAPM parameters, however, could be 

biased. For example, as reported in Table 2, the coefficient of relative risk aversion, Mγ , has a 

point estimate above 8 and in some specifications exceeds 10, the upper bound of the plausible 

range considered by Mehra and Prescott (1985). To address this issue, in this section we estimate 

equation (10) using more elaborate bivariate GARCH models, which might provide a better 

measure for the conditional second moments than the simple realized volatility model. Again, we 

rewrite equation (10) in the realized return form:  
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where , 1M tε +  and , 1H tε +  are shocks to stock market returns and the value premium, respectively. 

 We use the ADC model proposed by Kroner and Ng (1998). These authors show that it is 

very flexible in describing the dynamic of covariance terms because it nests several commonly 

used multivariate GARCH models. In the ADC model, the dynamic of variances and covariances 

is governed by the following equations: 
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where tH  is the conditional variance-covariance matrix: 
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Glosten, Jagannathan, and Runkle (1993), among many others, find that a negative return shock 

leads to a higher subsequent volatility than a positive return shock of the same magnitude does. 

This asymmetric effect is captured by the term , ,

, ,

max[0, ]
max[0, ]

M t M t

H t H t

η ε
η ε

−⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 in equation (16). As 

pointed out by Kroner and Ng (1998), this term also allows for an asymmetric effect in 

covariance. That is, an increase in the information flow following bad news can cause not only 

the asymmetric effect in its own variance, but also in the covariance due to a change in the 

relative rate of information flow across different types of firms or market segments. MHρ  and 

MHφ  are scalar parameters and the other parameters can be written in matrix forms: 
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where W is positive definite and C is a 2 × 2 symmetric matrix. Note that our notations in 

equation (18) reflect the fact that matrixes W and B are symmetric but matrixes A and G are not. 

The ADC model is appealing because it nests several popular multivariate GARCH 

specifications. In particular, Kroner and Ng (1998) show that, if matrixes A and B are diagonal 

and MHφ  is equal to 0, it becomes the asymmetric version of the constant conditional correlation 

model, as used by Scruggs (1998), for example. If MHρ  is equal to 0 and MHφ  is equal to 1, then 

the ADC model reduces to the asymmetric version of the popular BEKK model proposed by 

Engle and Kroner (1995), which, as we show below, seems to apply in this study. 

We estimate the model using the quasi-maximum likelihood (QML) method. Bollerslev 

and Woodridge (1992) show that QML parameter estimates can be consistent, even though the 

conditional log-likelihood function assumes normality while stock returns are known to be 

skewed and leptokurtic. Also, as discussed below, we find very similar results using the 

maximum likelihood estimation (MLE) method by assuming a t distribution or a normal 

distribution. 

Given a sample of T observations of the return vector, the parameters of the bivariate 

GARCH model are estimated by maximizing the conditional log-likelihood function: 

' 1

1 1
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where P denotes the vector of all the parameters to be estimated. Nonlinear optimization 

techniques are used to calculate the maximum likelihood estimates based on the Broyden, 

Fletcher, Goldfarb, and Shanno (BFGS) algorithm. 

The ADC model should be estimated under some parameter restrictions to ensure the 

positive definite covariance matrix. It is possible to impose the constraint 1|||| <+ mvmv φρ  in the 

model. To serve a similar purpose, Scruggs and Glabadanidis (2003) propose to penalize the 

likelihood function whenever the covariance matrix is not positive definite, which we followed 

in this study. While such treatment might lose the continuity of the likelihood function, it gains 

the ability to impose a less restrictive constraint and avoid the possibility of a non-positive 

definite covariance matrix. Also, imposing a penalty in the likelihood function often results in a 

function with multiple local optima. In this case, it is important to restart the optimization routine 

at several different starting points to ensure that the estimated parameters correspond to the 

global maximum of the likelihood function. All our results are tested for robustness using 

different starting values in the maximization of the likelihood function. 

 

A. Data 

Campbell and Vuolteenaho (2004) find a structural break in the components of the value 

premium’s market beta. In the post-1963 period, the value premium has disproportionately large 

loadings on the shock to discount rates—a measure of investment opportunities in their ICAPM. 

It, however, has a large discount-rate beta as well as a large cash-flow beta in the early (pre-

1963) period, indicating that the value premium is a poor proxy for investment opportunities and 

thus is well explained by the CAPM in that period. An immediate implication for our exercise is 

that the value premium should be a priced risk factor in the modern period but not in the early 
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period. Therefore, as in Campbell and Vuolteenaho (2004), we estimate the GARCH model 

using two monthly subsamples—the modern period January 1963 to February 2004 and the early 

period July 1926 to December 1962—although we focus mainly on the modern period because 

its results are directly comparable with those of the realized volatility model. Consistent with 

Campbell and Vuolteenaho, we confirm that while the CAPM explains the value premium well 

in the early sample, an ICAPM is needed for the modern sample (also see Petkova and Zhang 

[2005]). 

Table 7 provides summary statistics of the excess stock market return and the value 

premium in percentage over the period January 1963 to February 2004, the main focus of our 

analysis. Consistent with quarterly data in Table 1, the two variables are negatively correlated, 

with a correlation coefficient of –0.32. The Ljung-Box test indicates that the value premium is 

serially correlated. 

 

B. Model Selection Tests 

Kroner and Ng (1998), among others, argue that choosing a parsimonious GARCH 

specification is important for the asset pricing tests because they critically depend on the 

covariance matrix estimates. In fact, the ADC model was originally proposed to facilitate the 

model selection (Kroner and Ng, 1998, p. 833). A parsimonious data-determined model is 

desirable because the number of observations is limited but a large amount of the data is required 

to yield precise estimates of GARCH models. Hence, it is important in this study to impose 

statistically acceptable constraints and reduce the redundant parameters.  

The model selection test follows the general-to-specific approach. Similar to Scruggs 

(1998) and Scruggs and Glabadanidis (2003), we first look at the second-moment modeling and 
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then the first-moment modeling and report the results in Table 8. We first conduct a likelihood 

ratio test to examine the importance of allowing for interrelationships between the two 

conditional second moments of the stock market return and the value premium. The null model is 

the pooling of two univariate GARCH specifications, and the alternative model is the full-

fledged bivariate ADC model. As shown in panel A of Table 8, the test statistic is 112.93, which 

follows a chi-squared distribution with 10 degrees of freedom. Therefore, the null is strongly 

rejected, suggesting that we need to simultaneously estimate two conditional second moments 

and allow for interactions between them. 

Second, we test whether the more restrictive, and yet quite general, ABEKK model 

provides a sufficient description for the dynamics of stock returns. This requires a joint test of 

MHρ = 0 and MHφ = 1 in equation (16). As shown in Panel B of Table 8, the likelihood ratio test 

statistic is 1.30 and we fail to reject the null hypothesis. Given the fact that the ADC model 

involves more parameters and thus is more difficult to estimate, we hereafter focus on the 

ABEKK model in the remaining discussion, although we find similar results using the ADC 

model. Imposing such constraints should also help improve the efficiency of the estimation and 

reduce the standard errors of parameter estimates.  

Third, we would like to examine whether conditional second moments respond 

asymmetrically to past return shocks. We test this hypothesis by comparing a symmetric BEKK 

model of conditional second moments with the asymmetric BEKK model. The null hypothesis of 

symmetry is strongly rejected, as shown in Panel C of Table 8. 

 We then turn to the model selection test on the first-moment modeling, which focuses on 

the intertemporal relation between risk and expected returns. The first test of interest is whether 

the excess stock market return and the value premium are not related to the time-varying 
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conditional second moments, or 0MM MH HM HHγ γ γ γ= = = =  in the ABEKK model (Panel D of 

Table 8). The four restrictions are jointly rejected at the conventional significance level, 

indicating that conditional variance and covariance terms are significant determinants of the 

excess stock market return and the value premium. Merton’s ICAPM also dictates that the 

constant terms should be zero or 0R Hα α= =  in equation (15). As shown in panel E, we fail to 

reject these restrictions at the 30% significance level. Lastly, the theory also requires that the risk 

prices should be equal across assets or MM MHγ γ=  and HM HHγ γ= . We test this hypothesis jointly 

with the hypothesis of no constant terms 0E Hα α= = , although the results are essentially the 

same without the bundling. Again, panel F shows that these restrictions are not rejected at the 

conventional significance level. Therefore, consistent with the results obtained from the realized 

volatility model, Merton’s ICAPM also provides a good description of the data, using the 

ABEKK model. 

 

C. Model Estimation 

Table 9 presents the estimation results of the mean equations. We use the percentage 

return in the estimation; to make them comparable with the results in Table 2, we scale the 

constant terms by 1/100 and the slope parameters by 100. 

For comparison with the early literature, we first report in panel A of Table 9 the 

estimation results of pooling univariate asymmetric GARCH model, i.e., we restrict the 

interaction terms between the stock market return and the value premium to be zero in equation 

(16). Note that the covariance term does not show up in both equations because it is restricted to 

be zero. For the excess stock market return equation, the conditional mean is positively related to 

the conditional variance with a point estimate of 1.21; however, the relation is not statistically 
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significant at the conventional level. Similarly, we find a positive but insignificant risk-return 

relation for the value premium. Nevertheless, as in Table 2, such a result is tenable because the 

specification potentially suffers from an omitted variables problem, which we discuss next. 

Panel B of Table 9 presents the estimation results using the ABEKK model. In the 

unrestricted specification (row 2), all the parameters are insignificant. Given that the slope 

parameters are jointly significant (panel D of Table 8), this result indicates that our estimation is 

not efficient. One way to address this issue, as we have learned from the realized volatility model 

reported in Table 2, is to impose the restrictions dictated by Merton’s ICAPM. When the mean 

equations do not include the constant terms, the price of stock market risk becomes significant in 

the stock market return equation, with a point estimate of 5.9 and a standard error of 2.01 (row 

3). Moreover, four slope parameters in the mean equations are now statistically significant at the 

1% level, after we impose further restrictions that the risk prices are equal across assets, as 

shown in row 4. Given that these restrictions are not rejected by the data (Table 8), our results 

clearly demonstrate the importance of imposing the parameter constraints dictated by the theory 

to improve the estimation efficiency, which is particularly relevant in our nonlinear estimation 

with a relatively small number of observations. 

The point estimates of risk prices in row 4 of Table 9, the preferred specification, are 

reasonable. The price of stock market risk, Mγ , which is usually interpreted as a measure of 

relative risk aversion, has a point estimate of 4.64 and a standard error of 1.12. It thus falls 

comfortably within the plausible range from 1 to 10, as advocated by Mehra and Prescott (1985), 

and many other financial economists. Interestingly, it is strikingly similar to the point estimate of 

4.93 reported by Guo and Whitelaw (2005), who use the consumption-wealth ratio as a proxy for 

the covariance between the stock market return and investment opportunities. This is possibly 
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because, as shown in Table 3, the two variables capture some common variations of stock market 

returns in the realized volatility model. The risk price of the value premium, Hγ , has a point 

estimate of 5.86 and a standard error of 1.77. As shown in equations (8) and (9), Hγ  is equal to 

,

( 1)M

H DR

γ
β

− ; our point estimates thus imply that ,H DRβ  is equal to 0.62. This result is in line with the 

estimate reported in Table 5 of Campbell and Vuolteenaho (2004) for the post-1963 period and 

thus confirms that the value premium is indeed highly correlated with the discount-rate shock. 

Figure 5 plots the fitted values of conditional stock market variance (dashed line) and 

covariance between the stock market return and the value premium (solid line) from the 

estimation reported in row 4 of Table 9. The pattern is very similar to that of realized variance 

and covariance in Figure 1. In particular, the two components of conditional stock market returns 

are negatively correlated, with a correlation coefficient of –0.72. Given that they are both 

positively related to stock market returns, our results again suggest an omitted variables problem 

in the univariate GARCH model, which has been commonly used in this literature. Figure 6 

illustrates a negative relation between conditional variance of the value premium (solid line) and 

covariance between the value premium and the stock market return (dashed line). The pattern 

also explains that we fail to uncover a significant risk price for the value premium in the 

univariate GARCH model (row 1 of Table 9) because of the omitted variables problem. 

Figure 7 shows that the conditional variances of stock market return and the value 

premium tend to move in the same directions; however, the correlation is not perfect, with a 

correlation coefficient of 0.53. Lastly, Figure 8 shows that there are also substantial variations in 

the conditional coefficient of correlation between the stock market return and the value premium. 
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The latter result confirms the finding of Scruggs and Glabadanidis (2003) that it is important to 

allow for a time-varying correlation coefficient in the ICAPM estimation. 

Table 10 presents the parameter estimates of the benchmark ABEKK model, in which we 

impose all the ICAPM restrictions. Panels A and B report the estimates of the mean equations, 

which are the same as those in row 4 of Table 9. Panels C, D, and E show that most elements of 

each of the parameter matrices W, A, B, and G of the three conditional second moments are 

significant. These results are consistent with the existence of a time-varying variance-covariance 

matrix. Although the parameter estimates in general are not easy to interpret, they can still shed 

some light on the volatility process in a bivariate framework. Specifically, as shown by Engle 

and Kroner (1995, p. 127), the significance of MMb , MMa , HHb , and HHa  indicates the GARCH 

effects on the second moments for both the stock market return and value stock portfolio return. 

The significance of MHa  and HMa verifies the existence of cross-asset volatility spillovers. These 

parameter estimates suggest that the absolute size of return shocks originating in one asset, as 

measured by the squared value of lagged unpredictable returns, transmits to the current period’s 

conditional volatility in the other asset. Another channel of such volatility transmission is 

nonexistent (i.e., an insignificant MHb ); that is, the conditional variance in one asset is not 

dependent on that of the other asset in the last period. Finally, the significance of MMg and HHg  

suggests the asymmetric effect in volatility in both markets. However, there is no evidence for 

the asymmetric effect in the conditional covariance, since neither MHg  nor HMg  is significant. 

In panel C of Table 7 we report the mean of fitted values of conditional variances and 

covariance based on the estimation results reported in Table 10. They are very similar to the 

unconditional variance-covariance matrix of the excess stock market return and the value 

premium, as reported in panel B of Table 7. 
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D. Robustness Checks 

As mentioned above, Campbell and Vuolteenaho (2004) show that the value premium is 

more sensitive to the discount-rate shock than to the cash-flow shock in the modern (post-1963) 

period but not the early (pre-1963) period. Their results have two implications for the empirical 

ICAPM specification of equation (10) for the early period. First, we expect that the price of the 

value premium is negligible and statistically insignificant. Second, it suffers from an omitted 

variable problem; therefore, the price of stock market risk is likely to be biased downward 

towards zero. As shown in row 5 of Table 9, these conjectures are strongly supported by the 

estimation results of the ABEKK model for the period July 1926 to December 1962. The risk 

price associated with the value premium has a negligible point estimate of 0.006, with a standard 

error of 1.66, indicating that it is not significant at any conventional level. The price of stock 

market risk is again statistically significant; nevertheless, its point estimate of 2.47 is 

substantially smaller than the point estimate of 4.64 obtained from the modern period, as shown 

in row 4 of Table 9. We also report the results using the full sample in row 6. Again, we find that 

the value premium risk is not priced but the price of the market risk is significantly positive. 

Given the structural break documented by Campbell and Vuolteenaho, this result should be 

interpreted with caution. 

Although we concentrate on a restricted ABEKK specification in the previous discussion, 

it is worthwhile to note that we find similar results using the ADC model (as shown in panel C of 

Table 9). In the unrestricted model (row 7), we find that the risk prices are all positive though 

statistically insignificant. Interestingly, the risk prices become significant at the 1% level after 

we impose the ICAPM restrictions (row 8 of Table 9). Moreover, the point estimates are very 

similar to those obtained using the ABEKK model (as shown in row 4 of Table 9). However, the 
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likelihood ratio test rejects the ICAPM restrictions for the ADC model possibly because the 

value premium is a noisy proxy for investment opportunities.  

We also estimate the restricted ABEKK model using the MLE method by assuming a t 

distribution and a normal distribution for the modern sample and report the main results in panel 

D of Table 9. For the t distribution, the degree of freedom of the distribution has a point estimate 

of  7.85, which is also highly significant. This result is consistent with the general belief that the 

distribution of stock returns is characterized by heavy tails. Both the magnitudes and the 

significance levels of most parameter estimates are close to those under the normality 

assumption with only a few exceptions (mainly in matrix G). In particular, as shown in row 9, 

the two coefficients of interest, Mγ  and Hγ , are estimated to be 4.79 and 6.26, with a standard 

error of 1.06 and 1.66, respectively (row 9). For the normal distribution, the parameters Mγ  and 

Hγ  have the same point estimates as those in row 4, with a standard error of 1.11 and 1.85, 

respectively. Therefore, our results appear to be robust to alternative estimation methods. 

Lastly, we also repeat the above analysis using weekly and daily data. Again, our main 

finding that the covariances with the stock market return and the value premium carry a positive 

and significant risk premium holds well in the modern period under various specifications. For 

brevity, these results are not reported here but are available upon request. 

  

E. Diagnostics Tests 

To evaluate the adequacy of the benchmark ABEKK model reported in Table 10, we 

conduct several specification tests on the standardized residuals ( , , ,/ , ,i t i t ii th i M Hε ε
∧

= = ) 

and standardized products of residuals ( , , , , ,/ , ,i t j t i t j t ij th i M Hε ε ε ε
∧ ∧

= = ). Specifically, we 
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examine some moment conditions required for the consistency of QML estimates. Panel A of 

Table 11 shows that the two mean standardized residuals are not significantly different from 

zero. The evidence is somewhat mixed with testing the null hypothesis that the mean of the 

products of the residuals is 1, however. The null cannot be rejected for , ,M t M tε ε
∧ ∧

 and , ,H t H tε ε
∧ ∧

 but 

can be rejected for the cross-product, , ,M t H tε ε
∧ ∧

. We also note that the skewness and kurtosis for 

the standardized residuals is much lower than the skweness and kurtosis for the value premium 

but not for the stock market return. Panel B of Table 11 summarizes the Ljung-Box test for 

autocorrelation in the estimated residual series. The autocorrelation is still present in the 

residuals of HML equation (recall that the original HML value series contains autocorrelation). 

Overall, these results indicate that, while the model provides a reasonable description of the data, 

there is still room for improvement. 

 

IV. Conclusion 

 In this paper, we estimate a variant of Merton’s (1973) ICAPM using the value premium 

as a proxy for time-varying investment opportunities. In contrast with many early authors, we 

uncover a positive and significant risk-return tradeoff after controlling for covariance between 

the stock market return and the value premium. We also document a novel empirical result—a 

significantly positive relation between conditional mean and variance of the value premium 

using the ICAPM specification. These results, which are consistent with Campbell and 

Vuolteenaho (2004), Brennan, Wang, and Xia (2004), Petkova (2005), and Zhang (2005), 

suggest that the value premium might not be fully attributed to irrational pricing or data mining. 

 Our results shed light on the on-going debate about stock market return predictability in 

time-series data, which has been widely documented in past decades. It is consistent with three 
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hypotheses: irrational pricing, data mining, and the time-varying risk premium. While it has been 

difficult to distinguish between these alternatives, some recent authors, e.g., Bossaerts and 

Hillion (1999), Goyal and Welch (2003), and Ferson, Sarkissian, and Simin (2003), are more 

inclined to subscribe to the data mining explanation for at least two reasons. First, the forecasting 

variables are empirically motivated. Second, their forecasting performance varies substantially 

across different sample periods. This study allows us to make three statements here. First, 

existing economic theories have provided guidance for identifying predictive variables, for 

example, conditional variances and covariances of stock market returns and state variables in 

Merton’s ICAPM. Second, despite its simplicity, our analysis shows that the theoretically 

motivated variables forecast stock market returns in sample and out of sample. Third, many 

financial variables forecast stock returns because of their co-movements with conditional 

variances and covariances of stock market returns and other risk factors. 

 Jagannathan and Wang (1996), among others, argue that the CAPM holds conditionally 

but not unconditionally because of time-varying betas and the stock market risk premium. Given 

that the second moments of asset returns exhibit substantial variations across time, we confirm 

the importance of using conditional asset pricing models. Nevertheless, our results also indicate 

that the conditional CAPM does not adequately explain the post-1963 data because the value 

premium is found to be a priced risk factor. 

 Recent authors provide tentative explanations why stock market returns are predictable, 

which is not explained in Merton’s ICAPM. For example, in the habit formation model by 

Campbell and Cochrane (1999), expected returns change over time because of time-varying 

relative risk aversion. In contrast, in the limited stock market participation model by Guo (2004), 

investors require a liquidity premium to hold stocks, in addition to the risk premium in the 
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standard model because of various market frictions. Interestingly, Guo shows that the liquidity 

premium, which is closely tracked by the aggregate consumption-wealth ratio, could be 

negatively related to the risk premium, i.e., conditional stock market variance, although each of 

them individually is positively related to excess stock market returns. Guo’s model appears to 

provide a reasonable explanation for the results documented in this paper. For example, as shown 

in Table 3, the forecasting power of various measures of the second risk factor—e.g., covariance 

between the stock market return and the value premium, variance of the value premium, and the 

idiosyncratic volatility—is closely related to that of the aggregate consumption-wealth ratio. A 

further investigation of these results seems to be warranted and we leave it for future research.
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Table 1 Summary Statistics of Quarterly Return Data 
Note: We report summary statistics for the excess stock market return, tR ; the value premium, HMLt ; 

realized stock market variance, 2
,M tv ; realized variance of the value premium, 2

,H tv ; and realized covariance 

between the stock market return and the value premium,  ,MH tv . The sample spans the period 1963:Q4 to 
2002:Q4. 

 tR  HMLt  2
,M tv  2

,H tv  ,MH tv  
Panel A: Correlation Matrix 

tR  1.000     
HMLt  -0.483 1.000    

2
,M tv  -0.366 0.092 1.000   

2
,H tv  -0.276 0.285 0.697 1.000  

,MH tv  0.362 -0.189 -0.820 -0.929 1.000 
      

Panel B: Univariate Statistics 
Mean 0.013 0.012 0.005 0.001 -0.002 
Standard 
Deviation 

0.087 0.059 0.004 0.002 0.002 

Autocorrelation 0.033 0.138 0.555 0.719 0.551 
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Table 2 Merton’s ICAPM: Realized Volatility Model 
Note: We report the estimation results of the Merton’s ICAPM of equation (14) using the GMM: 

(14)      
2

1 , , , 1

2
1 , , , 1

t M MM M t HM MH t M t

t H MH MH t HH H t H t

R v v

HML v v

α γ γ ε

α γ γ ε
+ +

+ +

= + + +

= + + +
, 

where 1tR + is the excess stock market return; 1tHML +  is the value premium; 2
,M tv  is realized stock market variance; ,MH tv  is 

realized covariance between the stock market return and the value premium;  2
,H tv  is realized variance of the value premium; and 

, 1M tε +  and , 1M tε +  are shocks to the stock market return and the value premium, respectively.  Unless otherwise indicated, we use 
the quarterly sample spanning the period 1963:Q4 to 2002:Q4. The heteroskadesticity-corrected standard errors are in parentheses. 
***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively. In the column under R 2 , the adjusted R-squared is 
reported in rows 1 to 2 and the R-squared for the other rows. The two equations are estimated separately in rows 1 and 2 and jointly 
in the other rows. The system is just identified in row 3: We use a constant, 2

,M tv , and ,MH tv  as instrumental variables for the stock 

market return equation and use a constant, 2
,H tv , and ,MH tv  for the value premium equation. We impose the restriction of zero 

intercept in row 4, the restriction of the same risk prices in row 5, and both restrictions in rows 6 to 8. We use the same instrumental 
variables in rows 4 to 6 as in row 3. We also include the default premium, the term premium, the stochastically detrended risk-free 
rate, and the dividend yield as instrumental variables in row 7. Row 8 also includes the consumption-wealth ratio by Lettau and 
Ludvigson (2001b) as an instrumental variable. We report Hansen’s (1982) J-test in the column under J-Test. Rows 9 and 10 have 
the same specifications as rows 7 and 8, respectively, but are estimated for the sample period 1963:Q4 to 1997:Q4.  

 Panel A. Stock Market Returns  Panel B. the Value Premium  
 Rα  MMγ  HMγ  R 2   Hα  MHγ  HHγ  R 2  J-Test 

1 -0.000 
(0.009) 

2.907* 
(1.730) 

 0.015  0.005 
(0.005) 

 4.733 
(3.359) 

0.017  

2 -0.007 
(-.009) 

8.762*** 
(3.096) 

12.827** 
(5.825) 

0.046  0.005 
(0.005) 

10.662 
(7.519) 

17.160* 
(9.928) 

0.036  

3 -0.007 
(0.009) 

8.762*** 
(3.096) 

12.827** 
(5.825) 

0.058  0.005 
(0.005) 

10.662 
(7.519) 

17.160* 
(9.928) 

0.048  

4  8.112*** 
(2.291) 

13.131** 
(5.088) 

0.057   11.794 
(7.486) 

20.033** 
(9.306) 

0.048 X(2)=1.14 
(0.57) 

5 -0.006 
(0.009) 

9.220*** 
(2.969) 

14.277*** 
(5.393) 

0.058  0.006 
(0.005) 

9.220*** 
(2.969) 

14.277*** 
(5.393) 

0.048 X(2)=0.51 
(0.78) 

6  9.200*** 
(2.009) 

16.028*** 
(3.941) 

0.054   9.200*** 
(2.009) 

16.028*** 
(3.941) 

0.047 X(4)=2.06 
(0.72) 

7  8.476*** 
(1.937) 

15.463*** 
(3.821) 

0.051   8.476*** 
(1.937) 

15.463*** 
(3.821) 

0.046 X(12)=18.17 
(0.11) 

8  9.090*** 
(1.965) 

16.338*** 
(2.830) 

0.052   9.090*** 
(1.965) 

16.338*** 
(2.830) 

0.047 X(14)=27.00 
(0.02) 

9  11.766*** 
(2.239) 

19.110*** 
(5.046) 

0.025   11.766*** 
(2.239) 

19.110*** 
(5.046) 

0.008 X(12)=18.61 
(0.098) 

10  13.264*** 
(2.209) 

19.557*** 
(4.892) 

0.033   13.264*** 
(2.209) 

19.557*** 
(4.892) 

0.00 X(14)=25.82 
(0.03) 
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Table 3 Forecasting Quarterly Excess Stock Market Returns 
Note: We report the OLS regression results of forecasting one-quarter-ahead excess stock market returns using 
some predetermined variables over the period 1963:Q4 to 2002:Q4. The heteroskadesticity-corrected standard 
errors are in parentheses. ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively. 2

,M tv  is 

realized stock market variance; 2
,H tv  is realized variance of the value premium; ,MH tv  is realized covariance 

between the stock market return and the value premium; tRREL  is the stochastically detrended risk-free rate; 

tCAY  is the consumption-wealth ratio proposed by Lettau and Ludvigson (2001b); and tIV  is a measure of 
idiosyncratic volatility used in Guo and Savickas (2005). 

 2
,M tv  ,MH tv  2

,H tv  tRREL  tCAY  tIV  R 2  

1 7.839*** 
(2.968) 

11.623** 
(5.698) 

 -4.757** 
(2.280) 

  0.067 

2 9.433*** 
(3.051) 

7.800 
(5.931) 

  2.313*** 
(0.509) 

 0.147 

3 11.015*** 
(3.015) 

2.679 
(6.664) 

   -3.360*** 
(0.896) 

0.100 

4 8.168*** 
(2.193) 

 -17.038*** 
(5.203) 

   0.078 

5 7.567*** 
(2.128) 

 -16.325*** 
(5.075) 

-4.834** 
(2.225) 

  0.100 

6 9.007*** 
(2.172) 

 -10.874* 
(5.558) 

 2.139*** 
(0.539) 

 0.159 

7 10.511*** 
(2.275) 

 -5.234 
(8.367) 

  -2.923** 
(1.283) 

0.102 
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Table 4 Out of Sample Forecast Test 
Note: We assume that excess stock market returns are constant in the benchmark model and augment the benchmark model 
with realized stock market variance, 2

,M tv , and realized variance of the value premium, 2
,H tv . We report three out-of-sample 

forecast tests: (1) the mean-squared forecasting error (MSE) ratio of the augmented model to the benchmark model, 

AMSE / BMSE ; (2) the encompassing test ENC-NEW developed by Clark and McCracken (2001); and (3) the equal forecast 
accuracy test MSE-F developed by McCracken (1999). ENC-NEW tests the null hypothesis that the benchmark model 
encompasses all the relevant information about the next quarter’s excess stock market return against the alternative hypothesis 
that the predetermined variables provide additional information. MSE-F tests the null hypothesis that the benchmark model has 
an MSE less than or equal to the augmented model against the alternative hypothesis that the augmented model has smaller 
MSE. We use observations over the period 1963:Q4 to 1976:Q4 for the initial in-sample estimation and then generate forecast 
recursively for stock returns over the period 1977:Q1 to 2002:Q4. The Asy. CV column reports the asymptotic 95% critical 
values provided by Clark and McCracken (2001) and McCracken (1999). The BS. CV column reports the empirical 95% 
critical values obtained from bootstrapping, as in Lettau and Ludvigson (2001b). In particular, we first estimate a VAR (1) 
process of excess stock market returns and its forecasting variables with the restrictions under the null hypothesis. We then 
feed the saved residuals with replacements to the estimated VAR system, of which we set the initial values to their 
unconditional means. The ENC-NEW and MSE-F statistics are calculated using the simulated data and the whole process is 
repeated 10,000 times.  

      
   ENC-NEW  MSE-F 

 Models AMSE /

BMSE  
Statistic Asy. 

CV 
BS. 
CV 

 
 

Statistic Asy. 
CV 

BS. 
CV 

1 C+ 2
,M tv  + 2

,H tv  vs. C 0.96 11.86 2.09 2.98  4.46 1.52 1.28 
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Table 5 Forecasting Value Premium 
Note: We report the OLS regression results of forecasting the one-quarter-ahead value premium using some 
predetermined variables over the period 1963:Q4 to 2002:Q4. The heteroskadesticity-corrected standard errors are 
in parentheses. ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively. 2

,M tv  is realized 

stock market variance; 2
,H tv  is realized variance of the value premium; ,MH tv  is realized covariance between the 

stock market return and the value premium; tRREL  is the stochastically detrended risk-free rate; tCAY  is the 

consumption-wealth ratio proposed by Lettau and Ludvigson (2001b); and tIV  is a measure of idiosyncratic 
volatility used in Guo and Savickas (2005). 

 2
,M tv  ,MH tv  2

,H tv  tRREL  tCAY  tIV  R 2  

1  10.574 
(7.506) 

17.232* 
(9.782) 

3.178** 
(1.412) 

  0.056 

2  10.679 
(7.554) 

16.120 
(9.891) 

 -0.301 
(0.408) 

 0.033 

3  10.925 
(7.511) 

15.205 
(10.565) 

  0.423 
(1.015) 

0031 

4 -3.719** 
(1.627) 

 10.792** 
(4.842) 

   0.048 

5 -3.375** 
(1.633) 

 10.383** 
(4.718) 

2.772* 
(1.420) 

  0.062 

6 -3.875** 
(1.669) 

 9.644** 
(4.711) 

 -0.398 
(0.412) 

 0.048 

7 -4.852** 
(1.945) 

 5.081 
(6.273) 

  1.414 
(1.185) 

0.057 
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Table 6 Realized Variance of Alternatively Measured Value Premium 
Note: We report the OLS regression results of forecasting one-quarter-ahead returns using some 
predetermined variables over the period 1963:Q4 to 2002:Q4. The heteroskadesticity-corrected 
standard errors are in parentheses and ***, **, and * denote significance at the 1%, 5%, and 10% 
levels, respectively. 2

,M tv  is realized stock market variance; 2
,H tv  is realized variance of the value 

premium; 2
,HB tv  is realized variance of the value premium based on big stocks; and 2

,HS tv  is realized 
variance of the value premium based on small stocks. 

 2
,M tv  2

,H tv  2
,HS tv  2

,HB tv  R 2  

Panel A: Stock Market Returns 
1 8.168*** 

(2.194) 
-17.038*** 

(5.203) 
  0.078 

2 7.826*** 
(2.124) 

 -13.760*** 
(4.795) 

 0.061 

3 8.174*** 
(2.191) 

  -17.065*** 
(5.146) 

0.078 

      
Panel B: The Value Premium 

4 -3.719*** 
(1.627) 

10.792*** 
(4.842) 

  0.048 

5 -4.224** 
(1.654) 

 10.735*** 
(3.608) 

 0.057 

6 -3.728** 
(1.625) 

  10.825** 
(4.819) 

0.049 
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Table 7 Summary Statistics of Monthly Return Data 
Note: The table reports summary statistics of the excess stock market return, tR , and the value premium, tHML , 
in percentage.  Panel B reports the unconditional variance-covariance matrix in the upper triangle and the 
correlation coefficient in the lower triangle. Panel C reports the conditional variances and covariance, which are 
based on estimation of the ABEKK model in row 4, Table 9. 2

,M tσ  is stock market variance, 2
,H tσ  is variance of 

the value premium, and ,MH tσ  is covariance between the stock market return and the value premium. The 
sample spans the period January 1963 to February 2004. ***, **, and * denote significance at the 1%, 5%, and 
10% levels, respectively. 

Panel A. Summary Statistics 
 Ljung-Box statistics 
 

Mean Standard 
Deviation 

Skewness Kurtosis 
Q1 Q6 Q12 

tR  0.496 4.480 −0.485 4.930 1.226 5.620 8.790 

tHML  0.358 3.195 −0.571 9.582 10.711*** 23.362*** 26.739***
        

Panel B. Unconditional Covariance Matrix 
 tR  tHML  

tR  20.029 −4.593 

tHML  −0.322 10.187 
 

Panel C. Mean of Conditional Variances and Covariance 
2

,M tσ  ,MH tσ  2
,H tσ  

   
20.725 −4.919 9.595 
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Table 8 Specification Tests 
Note: The table reports the specification tests of the various GARCH specifications described in equations (15) 
through  (18). The sample spans the period January 1963 to February 2004.  

Null hypothesis  DF LR p-value 
 

Panel A. Pooling Univariate GARCH Model vs. ADC Model 
H0: No Interaction Term  10 112.93 0.00 
 

Panel B. ABEKK model vs. ADC Model 
H0: MHρ = 0 and MHφ = 1  2 1.30 0.52 
 

Panel C. BEKK Model vs. ABEKK Model 
H0: 0MM MH HM HHg g g g= = = =   4 32.52 0.00 
 

Panel D. Constant Equity Premium and Value Premium in ABEKK Model 
H0: 0MM MH HM HHγ γ γ γ= = = =   4 18.49 0.00 
 

Panel E. No Constant Terms in ABEKK Model 
H0: 0ER HMLα α= =   2 2.16 0.34 
 

Panel F. Equal Risk Prices Across Assets in ABEKK Model 
 H0: MM MHγ γ= , HM HHγ γ=  
 0ER HMLα α= =  

 4 4.12 0.39 
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Table 9 Merton’s ICAPM: Bivariate GARCH Model 
Note: The table reports the estimation results of the Merton’s ICAPM using various bivariate GARCH models described in equations 
(15) through (18). Unless otherwise indicated, we use the QML method and the monthly sample spanning the period January 1963 to 
February 2004. We use the sample period July 1926 to December 1962 in row 5 and the sample period July 1926 to February 2004 
in row 6. The specifications in rows 9 and 10 are the same as those in row 4 except that we assume a t distribution in row 9 and a 
normal distribution in row 10.  ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively. We report the log 
likelihood in the column under LL. 

 Stock Market Returns   Value Premium  
 Rα  MMγ  HMγ    Hα  MHγ  HHγ   LL 

Panel A: Pooling Univariate GARCH  
1 0.003 

(0.005) 
1.21 

(2.83) 
   0.000 

(0.002) 
 3.16 

(2.22) 
 -2599.52 

           
Panel B: ABEKK Model 

2 0.001 
(0.005) 

4.70 
(3.83) 

9.15 
(8.49) 

  0.001 
(0.002) 

2.41 
(4.89) 

2.64 
(3.54) 

 -2544.35 

3  5.90*** 
(2.01) 

10.3 
(7.58) 

   1.89 
(5.40) 

4.63 
(3.28) 

 -2545.43 

4  4.64*** 
(1.12) 

5.86*** 
(1.77) 

   4.64*** 
(1.12) 

5.86*** 
(1.77) 

 -2546.41 

5  2.46*** 
(0.825) 

0.006 
(1.66) 

   2.46*** 
(0.825) 

0.006 
(1.66) 

 -2380.88 

6  2.47*** 
(0.579) 

1.39 
(0.894) 

   2.47*** 
(0.579) 

1.39 
(0.894) 

 -4985.31 

           
Panel C: ADC Model 

7 0.002 
(0.007) 

3.33 
(4.01) 

6.76 
(4.37) 

  -0.000 
(0.002) 

3.29 
(3.12) 

1.39 
(0.894) 

 -2543.05 

8  4.19*** 
(1.18) 

6.05*** 
(1.81) 

   4.19*** 
(1.18) 

6.05*** 
(1.81) 

 -2556.50 

           
Panel D: ABEKK Model Using MLE Method 

9  4.79*** 
(1.06) 

6.26*** 
(1.66) 

   4.79*** 
(1.06) 

6.26*** 
(1.66) 

 –2528.70 

10  4.64*** 
(1.11) 

5.86*** 
(1.85) 

   4.64*** 
(1.11) 

5.86*** 
(1.85) 

 -2546.41 
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Table 10 Parameter Estimates of the Benchmark ABEKK Model 
Note: The table reports the estimation results of the ABEKK specification of equations (15) through (18) by 
imposing the restrictions MHρ = 0 and MHφ =1, the same specifications as those reported in row 4 of Table 9. 

We also impose the ICAPM restrictions MM MHγ γ= , HM HHγ γ= , and 0R Hα α= = .  The sample spans the 
period January 1963 to February 2004. ***, **, and * denote significance at the 1%, 5%, and 10% significance 
levels, respectively.  

Parameter Estimate Standard 
Error 

Parameter Estimate Standard Error 

 
Panel A. Mean equation of Stock Return Panel B. Mean equation of value Premium 

MMγ  4.64*** 1.12 MHγ  4.64*** 1.12 
      

HMγ  5.86*** 1.77 HHγ  5.86*** 1.77 
 

Panel C. Variance equation of stock Return Panel D. Variance equation of value Premium 
 

MMω  1.030*** 0.240 HHω  0.658*** 0.149 
      

MMb  0.933*** 0.022 HHb  0.871*** 0.030 
      

MMa  0.250*** 0.068 HHa  0.244*** 0.062 
      

MMg  0.125* 0.075 HHg  0.340*** 0.065 
      

Panel E. Covariance equation of Stock Return and Value Premium 
 

MHω  -0.524** 0.244 MHb  0.025 0.014 
      

MHa  -0.128** 0.065 HMa  -0.103** 0.0390 
      

MHg  -0.027 0.081 HMg  0.070 0.042 
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Table 11 Specification Tests 

Note: The Table reports the standardized residuals and their second moments.  Mε
∧

is the residual of the stock market 

return and Hε
∧

 is for the value premium. The calculation is based on the estimation of Table 10. ***, **, and * denote 
significance at the 1%, 5%, and 10% levels, respectively. 

 
Mε
∧

 Hε
∧

 M Mε ε
∧ ∧

 M Hε ε
∧ ∧

 H Hε ε
∧ ∧

 
Panel A. Sample statistics 

Mean −0.037 0.030 0.999 −0.307 0.992 
      

Standard Deviation 1.000 0.997 2.110 1.246 1.556 
      

Skewness −0.692 0.050 8.107 −2.046 2.857 
      

Kurtosis 5.354 3.447 101.388 21.208 13.499 
      

t-statistic for mean = 0 −0.822 0.670    
      

t-statistic for mean = 1   −0.009 −23.250*** −0.111 
 

Panel B. Ljung-Box statistics 
 

Q1 0.920 18.222*** 0.586 0.263 0.848 
      

Q6 5.412 22.923*** 1.517 7.815 2.751 
      

Q12 7.788 28.399*** 5.458 20.962 6.307 
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Figure 1 

 Realized Stock Market Variance (Dashed line) and Covariance between Stock Market Return 
and the Value Premium (Solid Line) 
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Figure 2 

Realized Variance of Value Premium (Solid Line) and Covariance between Stock Market and 
Value Premium (Dashed Line) 
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Figure 3 

Realized Variance of Stock Market Return (Dashed Line) and Value Premium (Solid Line) 
 
 
 
 

Figure 4 
Recursive MSE Ratio of Augmented Model to Benchmark Model (Table 4) 
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Figure 5 

Conditional Stock Market Variance (Dashed Line) and Covariance between Stock Market Return 
and Value Premium in Estimation of Row 4, Table 9 
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Figure 6 

Conditional Variance of Value Premium (Solid Line) and Covariance between Stock Market 
Return and Value Premium (Dashed Line) in Estimation of Row 4, Table 9
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Figure 7 

Conditional Variance of Stock Market Return (Dashed Line) and Value Premium (Solid Line) in 
Estimation of Row 4, Table 9 
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Figure 8 

Coefficient of Correlation between Stock Market Return and Value Premium in Estimation of 
Row 4, Table 9 

 

 


