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Abstract

We provide novel evidence on which theories best explain stock return anomalies

by decomposing anomaly portfolio returns into components driven by the underlying

�rms�cash �ows or their discount rates. For each of �ve well-known anomalies, we �nd

that cash �ow shocks explain more variation in anomaly portfolio returns than discount

rate shocks. The cash �ow and discount rate components of each anomaly�s returns

are negatively correlated. Discount rate shocks to a mean-variance e¢ cient portfolio

constructed from these anomalies are slightly negatively correlated with discount rate

shocks to the market portfolio, while the cash �ow shocks are uncorrelated with mar-

ket cash �ow shocks. Our evidence is inconsistent with theories of time-varying risk

aversion and theories of common shocks to investor sentiment. It is most consistent

with theories in which investors overextrapolate �rm-speci�c cash �ow news and those

in which �rm risk increases following negative cash �ow news.
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1 Introduction

Researchers in the past 30 years have uncovered robust patterns in stock returns that con-

tradict classic asset pricing theories. A prominent example is that value stocks outperform

growth stocks, even though these stocks are similarly risky by conventional measures. Myriad

theories, behavioral and rational, attempt to explain such asset pricing anomalies. Yet wide-

spread disagreement about the causes of these patterns remains because existing evidence is

insu¢ cient to di¤erentiate competing explanations.

We contribute to this debate by providing novel evidence on the sources of anomaly

returns. Rather than partitioning theories into those making behavioral or rational assump-

tions, we distinguish theories by their predictions of �rms�cash �ows and discount rates.

Several theories predict that discount rate �uctuations drive variation in the returns of

anomaly portfolios, whereas other theories predict that cash �ow variation is more impor-

tant. At one extreme, consider the model of noise trader risk proposed by De Long et al.

(1990). Firm dividends (cash �ows) are constant in this model, implying that all variation

in returns arises from changes in discount rates. At the other extreme, consider the simplest

form of the CAPM in which �rm betas and the market risk premium are constant. Expected

returns (discount rates) are constant in this setting, implying that all variation in returns

arises from changes in expected cash �ows. We introduce an empirical technique to decom-

pose the variance in anomaly long-short portfolio returns into cash �ow and discount rate

components, shedding new light on which theories explain anomalies.

Our empirical work focuses on �ve well-known anomalies, based on value, size, pro�tabil-

ity, investment, and issuance, and yields three sets of �ndings.1 First, for all �ve anomalies,

cash �ows explain more variation in anomaly returns than discount rates. Second, for all

�ve anomalies, shocks to cash �ows and discount rates are strongly negatively correlated.

Thus, �rms with negative cash �ow shocks tend to experience increases in discount rates.

1We also �nd similar patterns in an unreported analysis of stock price momentum, as measured by
Jegadeesh and Titman (1993).
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This association contributes signi�cantly to return variance in anomaly portfolios. Third,

anomaly cash �ow and discount rate components exhibit weak correlations with market cash

�ow and discount rate components. In fact, the mean-variance e¢ cient portfolio constructed

solely from anomalies exhibits discount rate shocks that are slightly negatively correlated

with market discount rate shocks. In one interpretation, increasd aversion to market risks

is not associated with increased aversion to the risks of anomaly underperformance� if any-

thing, it leads to less aversion to anomaly risks. Further, cash �ow shocks to the market are

uncorrelated with cash �ow shocks to this mean-variance e¢ cient anomaly portfolio, indicat-

ing that the two portfolios are exposed to distinct fundmental cash �ows risks. In addition,

there is little commonality in the cash �ow and discount rate components of di¤erent anom-

aly returns beyond that arising from overlap in the sets of �rms in anomaly portfolios. The

correlations among the cash �ow components of many anomalies�returns are insigni�cantly

di¤erent from zero, and most correlations among the discount rate components are also low.

Our three sets of �ndings have important implications for theories of anomalies. First,

theories in which discount rate variation is the primary source of anomaly returns, such as

De Long et al. (1990), are inconsistent with the evidence on the importance of cash �ow

variation. Second, theories that emphasize commonality in discount rates, such as theories of

time-varying risk aversion and those of common investor sentiment, are inconsistent with the

low correlations among the discount rate components of anomaly returns. Third, theories

in which anomaly cash �ows are strongly correlated with market cash �ows, such as Lettau

and Wachter (2007), are inconsistent with the empirical correlations that are close to zero.

In contrast, theories of �rm-speci�c biases in information processing and theories of �rm-

speci�c changes in risk are potentially consistent with these three �ndings. Such theories

include behavioral models in which investors overextrapolate �rms�cash �ow news and ra-

tional models in which �rm risk increases after negative cash �ow shocks. In these theories,

discount rate shocks amplify the e¤ect of cash �ow shocks on returns, consistent with the ro-

bustly negative empirical correlation between these shocks. These theories are also consistent
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with low correlations between anomaly return components and market return components.

Our approach builds on the seminal present-value decomposition introduced by Campbell

and Shiller (1988) and applied to the �rm-level by Vuolteenaho (2002). We exploit the

present-value equation expressing each �rm�s book-to-market ratio in terms of expected

returns and cash �ows. To this end, we apply the clean surplus accounting relation of

Ohlson (1995) to a log-linear approximation of book-to-market ratios, following Vuolteenaho

(2002) and Cohen, Polk, and Vuolteenaho (2003). We directly estimate �rms�discount rates

and expected cash �ows using a vector autoregression (VAR) in which we impose the present-

value relation. The VAR provides estimates of discount rates and expected cash �ows at

each horizon as a function of �rm characteristics, such as pro�tability and investment, and

aggregate variables, such as the risk-free rate. We di¤er from prior work in that we derive

and analyze the implications of our �rm-level estimates for interesting factor portfolios, such

as the market, size, and value factors, to investigate the fundamental drivers of these factors�

returns.

The premise of the approach is that investors use the characteristics in the VAR to

form expectations of returns and cash �ows, implying that their valuations are based on

these characteristics. The characteristics could represent investors�perceptions of risk. We

purposely select characteristics that serve as the basis for factor portfolios and betas in recent

asset pricing models, such as the �ve-factor model of Fama and French (2015). Examples of

such characteristics include book-to-market ratios, size, pro�tability, and investment. Firm

characteristics could also represent investors�possibly mistaken beliefs about cash �ows. In

this spirit, we include characteristics such as share issuance that are featured in studies on

asset pricing anomalies (see Daniel and Titman (2006) and Ponti¤ and Woodgate (2008)).

Recognizing that these categories are not mutually exclusive, we design general tests that

allow characteristics to forecast returns or earnings for any of the reasons above.

A key to our approach is that we aggregate �rm-level VAR estimates rather than ana-

lyzing the returns and cash �ows of anomaly portfolios in a VAR. Speci�cally, we consider

3



�ve long-short quintile portfolios sorted by characteristics � book-to-market, investment,

pro�tability, issuance, and size. We decompose the returns to these portfolios into cash �ow

and discount rate shocks based on the underlying �rms�cash �ow and discount rate shocks.

This analysis allows us to test theories of anomalies as these typically apply to individual

�rms.

Moreover, the alternative approach in which one directly analyzes the cash �ows and

returns of the long-short portfolios obfuscates the cash �ow and discount rate components

of anomaly returns. Firms�weights in anomaly portfolios can change dramatically with the

realization of stock returns and �rms�changing characteristics. In the Appendix, we provide

extreme examples in which �rms�cash �ows are constant, but the direct VAR estimation

suggests that all return variation in a rebalanced portfolio arises from cash �ows. To our

knowledge, our study is the �rst to recognize the pitfalls of the direct approach and o¤er a

practical solution.

Complementing our main results on anomaly portfolios, the �rm-level VAR yields insights

into the sources of variation in individual �rms�discount rates and cash �ows. One notable

�nding is that the strongest predictors of long-run stock returns are book-to-market ratios

and �rm size, implying that large �rms and those with high valuation ratios have signi�cantly

lower costs of equity capital. The high persistence of these predictors helps to explain their

importance for long-run expected returns. Some patterns in expected short-run returns,

such as the negative relation with investment, do not persist. Certain �rms, such as those

with low pro�tability and high investment rates, exhibit starkly di¤erent short-run and long-

run discount rates. Thus, practitioners making capital budgeting decisions should exercise

caution when applying short-run discount rates to long-run projects.

Our method and �ndings build on the growing body of research that exploits the present-

value relation to investigate the relative importance of cash �ows and discount rates in

valuations. We contribute to this literature by characterizing the components of anomaly

returns and relating them to each other as well as market return components. We build on the
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�rm-level VAR introduced in Vuolteenaho�s (2002) study of �rm-level returns. Vuolteenaho

(2002) �nds that cash �ow variation drives �rm-level returns, but discount rate variation

is important at the market level. The reconciliation to this tension is that there is more

commonality in �rms�discount rates than in their expected cash �ows. Vuolteenaho (2002)

does not consider anomaly portfolios, which are our primary focus.

Cohen, Polk, and Vuolteenaho (2003) use a portfolio approach to analyze the dynamics

of the value spread� i.e., the cross-sectional dispersion in book-to-market ratios. The study

concludes that most of the spread comes from di¤erences in expected cash �ows. Our VAR

approach allows us to use many characteristics beyond book-to-market ratios to forecast

�rms�returns and cash �ows. Because several of these characteristics predict returns and

are correlated with book-to-market ratios, we infer that discount rate variation is more

important than suggested by Cohen, Polk, and Vuolteenaho�s (2003) results. Our studies

di¤er in that we analyze multiple anomalies and do so by aggregating estimates based on a

�rm-level VAR.

Lyle and Wang (2015) also apply the clean-surplus relation of Ohlson (1995) and log-

linear techniques to relate book-to-market ratios to future cash �ows and discount rates.

They estimate the discount rate and cash �ow components of �rms�book-to-market ratios

by forecasting one-year returns using return on equity and book-to-market ratios. Lyle and

Wang (2015) focus on stock return predictability at the �rm level and do not analyze the

sources of anomaly returns. Our work is related to studies that use the log-linear approxima-

tion of Campbell and Shiller (1988) for price-dividend ratios, typically applied to the market

portfolio (see Campbell (1991), Larrain and Yogo (2008), van Binsbergen and Koijen (2010),

and Kelly and Pruitt (2013)). We do not price cash �ow and/or discount rate shocks in

our analysis, unlike, e.g., Campbell and Vuolteenaho (2004) and Kozak and Santosh (2017).

Lastly, our paper is related to the implied cost of capital literature (see, e.g., Claus and

Thomas (2001) and Pastor, Sinha, and Swaminathan (2008)).
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2 Theory

Empirical research identi�es several asset pricing anomalies in which �rm characteristics,

such as �rm pro�tability and investment, predict �rms�stock returns even after controlling

for market beta. Theories of these anomalies propose that the properties of investor beliefs

and �rm cash �ows vary with �rm characteristics. Here we explain how decomposing anomaly

returns into cash �ow and discount rate shocks helps distinguish alternative explanations of

anomalies.

The well-known value premium provides a useful setting for di¤erentiating competing

theories. De Long et al. (1990) and Barberis, Shleifer and Vishny (1998) are examples of

behavioral models that potentially explain this anomaly, while Zhang (2005) and Lettau and

Wachter (2007) are examples of rational explanations.

To relate the these models�predictions to our study, recall from Campbell (1991) that

we can approximately decompose shocks to log stock returns into shocks to expectations of

future cash �ows and returns:2

ri;t+1 � Et [ri;t+1] � CF shocki;t+1 �DRshocki;t+1 ; (1)

where

CF shocki;t+1 = (Et+1 � Et)
1P
j=1

�j�1�di;t+j; (2)

DRshocki;t+1 = (Et+1 � Et)
1P
j=2

�j�1ri;t+j; (3)

and where �di;t+j (ri;t+j) is the log of dividend growth (log of gross return) of �rm i from

time t+j�1 to time t+j, and � is a log-linearization constant slightly less than 1. We de�ne

anomaly returns as the value-weighted returns of the stocks ranked in the highest quintile

of a given characteristic minus the value-weighted returns of stocks ranked in the lowest

2The operator (Et+1 � Et)x is short-hand for Et+1 [x]�Et [x]; the update in the expected value of x from
time t to time t+1. The equation relies on a log-linear approximation of the price-dividend ratio around its
sample average.
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quintile. We de�ne anomaly cash �ow shocks as the cash �ow shocks to the top quintile

portfolio minus the shocks to the bottom quintile portfolio. We similarly de�ne anomaly

discount rate shocks.

First, consider a multi-�rm generalization of the De Long et al. (1990) model of noise

trader risk. In this model, �rm cash �ows are constant but stock prices �uctuate because

of random demand from noise traders. As the expectations in Equation (2) are rational,

there are no cash �ow shocks in this model. By Equation (1), all shocks to returns are due

to discount rate shocks. Of course, the constant cash �ow assumption is stylized and too

extreme. But, if one in the spirit of this model assumes that value and growth �rms have

similar cash �ow exposures, the variance of net cash �ow shocks to the long-short portfolio

would be small relative to the variance of discount rate shocks. Thus, a �nding that discount

rate shocks only explain a small fraction of the return variance to the long-short portfolio

would be inconsistent with this model. This theory does not make clear predictions about

links between anomaly and market-level cash �ows and discount rates.

Barberis, Shleifer, and Vishny (BSV, 1998) propose a model in which investors overex-

trapolate from long sequences of past �rm earnings when forecasting future �rm earnings.

Thus, a �rm that repeatedly experiences low earnings will be underpriced (a value �rm) as

investors are too pessimistic about its future earnings. The �rm will have high expected

returns as future earnings on average are better than investors expect. Growth �rms will

have low expected returns for analogous reasons. In this model, cash �ow and discount rate

shocks are intimately linked. Negative shocks to cash �ows lead to low expected future cash

�ows. However, these irrationally low expectations manifest as positive discount rate shocks

in Equations (2) and (3), as the econometrician estimates expected values under the objec-

tive probability measure. Thus, this theory predicts a strong negative correlation between

cash �ow and discount rate shocks at the �rm and anomaly levels. This theory o¤ers no

clear guidance about the relation between anomaly and market return components.

Zhang (2005) provides a rational explanation for the value premium by modeling �rms�
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production decisions. Persistent idiosyncratic productivity (earnings) shocks render �rms,

by chance, as either value or growth �rms. Value �rms, which have low productivity, have

more capital than optimal because of adjustment costs. These �rms�values are very sensitive

to negative aggregate productivity shocks as they have little ability to smooth such shocks

through disinvesting. Growth �rms, on the other hand, have high productivity and subop-

timally low capital stocks and therefore are not as exposed to negative aggregate shocks.

Value (growth) �rms�high (low) betas with respect to aggregate shocks justify their high

(low) expected returns. Similar to BSV, this model predicts a negative relation between

�rm cash �ow and discount rate shocks. Di¤erent from BSV, the model predicts that the

value anomaly portfolio has cash �ow and discount rate shocks that are positively related

to market cash �ow and discount rate shocks on account of the high market beta of such a

portfolio.

Lettau and Wachter (2007) propose a duration-based explanation of the value premium.

In their model, growth �rms are more exposed to shocks to market discount rates, which

are not priced, and less exposed to market cash �ow shocks, which are priced, than value

�rms. This model implies that cash �ows shock to the long-short value portfolio are positively

correlated with market cash �ows and that discount rate shocks to the long-short portfolio are

negatively correlated with market discount rates. It assumes low (actually, zero) correlation

between discount rate and cash �ow shocks.

In sum, models of anomaly returns have direct implications for the magnitudes and

correlations of anomaly and market cash �ow and discount rate shocks. We are unaware

of any prior study that estimates these empirical moments. The anomaly theories apply to

individual �rms. Thus, one must analyze �rm-level cash �ow and discount rate shocks and

then aggregate these into anomaly portfolio shocks. Extracting cash �ow and discount rate

shocks indirectly from dynamic trading strategies, such as the Fama-French value and growth

portfolios, can lead to mistaken inferences as the trading itself confounds the underlying

�rms�cash �ow and discount rate shocks. In the Appendix, we provide an example of a
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value-based trading strategy. The underlying �rms only experience discount rate shocks,

but the traded portfolio is driven solely by cash �ow shocks as a result of rebalancing.

2.1 The Empirical Model

We begin our analysis by estimating a �rm-level panel Vector Autoregression (VAR) as in

Vuolteenaho (2002) to extract �rm-level cash �ow and discount rate shocks, relying on the

following log-linear approximation for �rms�book-to-market ratios:

bmi;t � ri;t+1 � ei;t+1 + �bmi;t+1; (4)

where bmi;t is the log of the book value of equity to the market value of equity of �rm i

in year t, ri;t+1 and ei;t+1 are the year t + 1 log return to equity and log accounting return

on equity (ROE), respectively. The VAR imposes the present value relationship implied by

the above approximation and it includes �rm characteristics related to anomaly returns as

described in the Data Section in addition to earnings, returns, and book-to-market ratios.

Because the approach is standard in the literature, we relegate the description of the VAR

to the Appendix.

We next analyze the sources of return variance for individual �rms, the market portfolio,

and anomaly portfolios, such as the long-short value minus growth portfolio. The VAR

provides estimates of cash �ow and discount rate shocks to �rm-level returns: CF shocki;t and

DRshocki;t . We obtain portfolio-level variance decompositions by aggregating the portfolio

constituents�CF shocki;t and DRshocki;t . Because the �rm-level variance decomposition applies to

log returns, the portfolio cash �ow and discount rate shocks are not simple weighted averages

of the individual �rms�cash �ow and discount rate shocks. Therefore we approximate each

�rm�s gross return using a second-order Taylor expansion around its current expected log

return and then aggregate shocks to �rms�gross returns using portfolio weights.

The �rst step in this process is to express gross returns in terms of the components of
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log returns using:

Ri;t+1 � exp (ri;t+1)

= exp (Etri;t+1) exp
�
CF shocki;t+1 �DRshocki;t+1

�
; (5)

where Etri;t+1 is the predicted value and CF shocki;t and DRshocki;t are estimated shocks from

�rm-level VAR regressions in which we impose the present-value relation. A second-order

expansion at time t around a value of zero for both of the shocks yields:

Ri;t+1 � exp (Etri;t+1)
�
1 + CF shocki;t+1 +

1

2

�
CF shocki;t+1

�2 �DRshocki;t+1 +
1

2

�
DRshocki;t+1

�2
+ CF shocki;t+1 DR

shock
i;t+1

�
:

(6)

We �nd that this approximation works very well in practice. Next we de�ne the cash �ow

and discount rate shocks to �rm returns measured in levels as:

CF
level_shock
i;t+1 � exp (Etri;t+1)

�
CF shocki;t+1 +

1

2

�
CF shocki;t+1

�2�
; (7)

DR
level_shock
i;t+1 � exp (Etri;t+1)

�
DRshocki;t+1 �

1

2

�
DRshocki;t+1

�2�
; (8)

CFDRcrossi;t+1 � exp (Etri;t+1)CF
shock
i;t+1 DR

shock
i;t+1 : (9)

For a portfolio with weights !pi;t on �rms, we can approximate the portfolio return measured

in levels using:

Rp;t+1 �
nP
i=1

!pi;t exp (Etri;t+1) � CF
level_shock
p;t+1 �DRlevel_shockp;t+1 + CFDRcrossp;t+1; (10)

where

CF
level_shock
p;t+1 =

nP
i=1

!pi;tCF
level_shock
i;t+1 ; (11)

DR
level_shock
p;t+1 =

nP
i=1

!pi;tDR
level_shock
i;t+1 ; (12)

CFDRcrossp;t+1 =
nP
i=1

!pi;tCFDR
cross
i;t+1 : (13)
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We decompose the variance of portfolio returns using

var
�
~Rp;t+1

�
� var

�
CF

level_shock
p;t+1

�
+ var

�
DR

level_shock
p;t+1

�
�2cov

�
CF

level_shock
p;t+1 ; DR

level_shock
p;t+1

�
+var

�
CFDRcrossp;t+1

�
; (14)

where ~Rp;t+1 � Rp;t+1�
nP
i=1

!pi;t exp (Etri;t+1). We ignore covariance terms involvingCFDR
cross
p;t+1

as these are very small in practice.

The VAR o¤ers a parsimonious, reduced-form model of the cross-section of expected cash

�ows and discount rates at all horizons. In the Appendix, we show how the VAR speci�cation

is related to standard asset pricing models. In particular, the VAR speci�cation concisely

summarizes the dynamics of expected cash �ows and returns, even when both consist of

multiple components �uctuating at di¤erent frequencies. Fundamentally, shocks to a �rm�s

discount rates arise from shocks to the product of the �rm-speci�c quantity of risk and the

aggregate price of risk, as well as shocks to the risk-free rate.

When analyzing cash �ow and discount rate shocks to long-short portfolios, we obtain

the anomaly cash �ow (discount rate) shock as the di¤erence in the cash �ow (discount rate)

shocks between the long and short portfolios. Taking the value anomaly as an example,

suppose the long value portfolio and the short growth portfolio have the same betas with

respect to all risk factors except the value factor. The VAR implies that discount rate shocks

to this long-short portfolio can only arise from three sources: 1) shocks to the spread in the

factor exposure between value and growth �rms; 2) shocks to the price of risk of the value

factor; or 3) shocks to the di¤erence in return variance between the two portfolios. The

third possibility arises because we analyze log returns. Similarly, cash �ow shocks to this

long-short portfolio only re�ect these portfolios�di¤erential exposure to cash �ow factors.
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3 Data

We use Compustat and CRSP data from 1962 through 2015 to estimate the components in

the present-value equation. Our analysis requires panel data on �rms�returns, book values,

market values, earnings, and other accounting information, as well as time series data on

factor returns, risk-free rates, and price indexes. Because computations of certain variables

in the VAR require three years of historical accounting information, our estimation focuses

on the period from 1964 through 2015.

We obtain all accounting data from Compustat, though we augment our book data with

that from Davis, Fama, and French (2000). We obtain data on stock prices, returns, and

shares outstanding from the Center for Research on Securities Prices (CRSP). We obtain one-

month and one-year risk-free rate data from one-month and one-year yields of US Treasury

Bills, which are available on Kenneth French�s website and the Fama Files in the Monthly

CRSP US Treasury Database, respectively. We obtain in�ation data from the Consumer

Price Index (CPI) series in CRSP.

We impose sample restrictions to ensure the availability of high-quality accounting and

stock price information. We exclude �rms with negative book values as we cannot compute

the logarithms of their book-to-market ratios, which are key elements in the present-value

equation. We include only �rms with nonmissing market equity data at the end of the most

recent calendar year. Firms also must have nonmissing stock return data for at least 225

days in the past year, which is necessary to accurately estimate stock return variance as

discussed below. We exclude �rms in the bottom quintile of the size distribution for the New

York Stock Exchange to minimize concerns about illiquidity and survivorship bias. Lastly,

we exclude �rms in the �nance and utility industries because accounting and regulatory

practices distort these �rms�valuation ratios and cash �ows. We impose these restrictions

ex ante and compute subsequent book-to-market ratios, earnings, and returns as permitted

by data availability. We use CRSP delisting returns and assume a delisting return is -90%

in the rare cases in which the delisting return is missing.
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When computing a �rm�s book-to-market ratio, we adopt the convention of dividing its

book equity by its market equity at the end of the June immediately after the calendar year

of the book equity. With this convention, the timing of market equity coincides with the

beginning of the stock return measurement period, allowing us to use the clean-surplus equa-

tion below. We compute book equity using Compustat data when available, supplementing

it with hand-collected data from the Davis, Fama, and French (2000) study. We adopt the

Fama and French (1992) procedure for computing book equity. Market equity is equal to

shares outstanding times stock price per share. We sum market equity across �rms that have

more than one share class of stock. We de�ne lnBM as the natural log of book-to-market

ratio.

We compute log stock returns in real terms to ensure consistency with lnBM and our

log earnings measures below, which are denominated in real terms. We set real log annual

stock returns equal to log returns minus the log of in�ation, as measured by the log change

in the CPI. Following the convention in asset pricing, we compute annual returns from the

end of June to the following end of June. The bene�t of this timing convention is that

investors have access to December accounting data prior to the ensuing June-to-June period

over which we measure returns.

Our primary measure of earnings is the log of clean-surplus return on equity, lnROECS,

though we also compute log return on equity, lnROE, for comparison. We focus on clean-

surplus earnings because our framework requires consistency between �rms�book-to-market

ratios, returns, and earnings. We de�ne log clean-surplus earnings as in Ohlson (1995) and

Vuolteenaho (2002), using log stock returns minus the change in log book-to-market ratios:

lnROECSi;t+1 � ri;t+1 + �bmi;t+1 � bmi;t: (15)

We extract this measure of clean-surplus earnings from the data as in Equation (15), thereby

ensuring that the log-linear model holds for each �rm at each time.

The log of return on equity is de�ned as log of one plus net income divided by last year�s
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inferred book equity, where we substitute income before extraordinary items if net income is

unavailable. We infer last year�s book equity using current accounting information and the

clean surplus relation� i.e., last year�s book equity is this year�s book equity plus dividends

minus net income. We subtract the log in�ation rate, based on the average CPI during the

year, from log return on equity to obtain lnROE. We winsorize both earnings measures

at ln(0.01) when earnings is less than -99%. We follow the same procedure for log returns

and for log �rm characteristics that represent percentages with minimum bounds of -100%.

Alternative winsorizing or truncation procedures have little impact on our results.

Figures 1A and 1B compare clean-surplus earnings (lnROECS) with return on equity

(lnROE) for two large, well-known �rms, Apple and Caterpillar, in di¤erent industries. The

�gures show that the two earnings series closely track each other in most years. Large dis-

crepancies occasionally arise from share issuance or merger events, which can cause violations

of the clean surplus equation.

We compute several �rm characteristics that predict short-term stock returns in historical

samples. We compute each �rm�s market equity (ME) or size as shares outstanding times

share price. Following Fama and French (2015), we compute pro�tability (Prof) as annual

revenues minus costs of goods sold, interest expense, and selling, general, and administrative

expenses, all divided by book equity from the same �scal year.3 Following Cooper, Gulen,

and Schill (2008) and Fama and French (2015), we compute investment (Inv) as the annual

percentage growth in total assets. Following Ponti¤ and Woodgate (2008), we compute

share issuance (Issue) as the percentage change in adjusted shares outstanding over the past

36 months. We transform each of these four measures by adding one and taking its log,

resulting in the following variables: lnME, lnProf, lnInv, and lnIssue. We also subtract

the log of gross domestic product from lnME to ensure stationarity. We use an alternative

stationary measure of �rm size (SizeWt), equal to �rm market capitalization divided by the

total market capitalization of all �rms in the sample, when applying value weights to �rms�

3Novy-Marx (2013) uses a similar de�nition for pro�tability, except that the denominator is total assets
instead of book equity.
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returns for the purpose of forming portfolios.

We compute stocks�annual return variances based on daily excess log returns, which are

daily log stock returns minus the daily log return from the one-month risk-free rate as of the

beginning of the month. A stock�s realized variance is simply the annualized average value

of its squared daily excess log returns during the past year. We do not subtract each stock�s

mean squared excess return to minimize estimation error in this calculation. We transform

realized variance by adding one and taking its log, resulting in the variable lnRV.

Table 1 presents summary statistics for the variables in our analysis. For ease of inter-

pretation, we show statistics for nominal annual stock returns (AnnRet), nominal risk-free

rates (Rf), and in�ation (In�at) before we apply the log transformation. Similarly, we sum-

marize stock return volatility (Volat) instead of log variance. We multiply all statistics by

100 to convert them to percentages, except the lnBM and lnME statistics, which retain their

original scale.

Panel A displays the number of observations, means, standard deviations, and percentiles

for each variable. The median �rm has a log book-to-market ratio of �0:66, which translates

into a market-to-book ratio of e0:66 = 1:94. Valuation ratios range widely, as shown by the

10th and 90th percentiles of market-to-book ratios of 0.75 and 5.93. The variation in stock

returns is substantial, ranging from -40% to 66% for the 10th and 90th percentiles.

Panel B shows that most correlations among the variables are modest. One exception

is the mechanical correlation between the alternative size measures. The variables with the

strongest correlations with book-to-market ratios are the �rm return and size measures,

which exhibit negative correlations ranging from �0:28 to �0:37. The positive correlation of

0:39 between issuance and investment could be partly driven by mergers that trigger stock

issuance and investment. Issuance and mergers cause deviations in clean-surplus accounting

for the standard return on equity (lnROE) measure. Lastly, the substantial correlation of

0:55 between investment and clean-surplus return on equity is consistent with the well-known

relationship between �rm investment and cash �ows.
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4 VAR Estimation

We estimate the �rm-speci�c and common predictors of �rms�(log) returns and cash �ows

using a panel VAR system. Natural predictors of returns include characteristics that serve

as proxies for �rms�risk exposures or stock mispricing. As predictors of earnings, we use

characteristics based on accounting metrics and market prices that forecast �rm cash �ows

in theory and practice.

Our primary VAR speci�cation includes eight �rm-speci�c characteristics as predictors of

�rm returns and cash �ows. Two �rm characteristics are the lagged values of the dependent

variables (lnRet and lnROECS). Five �rm characteristics are those used in constructing the

anomaly portfolios: lnBM, lnProf, lnInv, lnME, and lnIssue. The eighth �rm characteristic

is log realized variance (lnRV), which captures potential di¤erences between expected log

returns and the log of expected returns as explained below. We standardize each independent

variable by its full-sample standard deviation to facilitate interpretation of the regression

coe¢ cients. The only exceptions are lnBM, which is not standardized to enable imposing

the present-value relation in the VAR estimation, and the two lagged dependent variables.

All log return and log earnings forecasting regressions include the log real risk-free rate

(lnRf) to capture common time-series variation in �rm valuations resulting from changes in

market-wide discount rates.

Standard discount rates are based on expected returns, not expected log returns. Yet

log returns must be the dependent variable in our regressions to be consistent with the

log-linearization of book-to-market ratios. Including lnRV as a predictive variable in the

VAR helps us isolate di¤erences in expected log returns and the log of expected returns.

Assuming annual stock returns are lognormally distributed, the expected di¤erence between

our dependent variable and standard discount rates is equal to half the variance of log returns,

which is likely to be re�ected in the predictive coe¢ cient on lnRV. Even if expected returns

are unpredictable, we will �nd that stock return variance negatively forecasts log returns.

However, the empirical results below indicate that lnRV is not a statistically signi�cant
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predictor of either log returns or log earnings.

We estimate a �rst-order autoregressive system, allowing for one lag of each characteristic.

A �rst-order VAR allows us to estimate the long-run dynamics of log returns and log earnings

based on the short-run properties of a broad cross section of �rms. We do not need to impose

restrictions on which �rms survive for multiple years, thereby mitigating statistical noise

and survivorship concerns. As a robustness check, we investigate the second-order VAR

speci�cation and �nd very similar results as the second lags of the characteristics add little

explanatory power.

The VAR system also includes regressions in which we forecast �rm-speci�c and aggregate

variables using a parsimonious speci�cation. The only predictors of each �rm characteristic

are the �rm�s own lagged value of its characteristic and the �rm�s lagged log book-to-market

ratio. For example, the only predictors of log investment are lagged log investment and

lagged log book-to-market ratio. This restriction improves estimation e¢ ciency without

signi�cantly reducing the explanatory power of the regressions. We model the real risk-free

rate as a simple �rst-order autoregressive process.

The main concern with our panel VAR speci�cation is that it omits an important com-

mon component in �rms�expected cash �ows and discount rates. We address this issue in

Section 7 by considering alternative VAR speci�cations in which we include the market-wide

valuation ratio along with interactions with �rm-level characteristics. Ultimately, our pri-

mary speci�cation omits aggregate variables, except the risk-free rate, because they do not

materially increase the explanatory power of the return and cash �ow forecasting regressions

and result in extremely high standard errors in return variance decompositions. Of course,

it is possible that another not-yet-identi�ed aggregate variable would materially improve on

our forecasting regressions.

We conduct all tests using standard equal-weighted regressions, but we �nd that our

�ndings are robust to applying value weights to each observation. Table 2 displays the

coe¢ cients for the regressions in which we forecast �rms� log returns and earnings in the
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�rst two columns. The third column in Table 2 shows the implied coe¢ cients on �rms�log

book-to-market ratios based on the clean surplus relation between log returns, log earnings,

and log valuations. Standard errors are clustered by year and �rm, following Petersen (2009),

and appear in parentheses below the coe¢ cients.

The �ndings in the log return regressions are related to the large literature on short-

horizon forecasts of returns. We �nd that �rms�log book-to-market ratios and pro�tability

are positive predictors of their log returns at the annual frequency, whereas log investment

and share issuance are negative predictors of log returns. Log �rm size and realized variance

weakly predict returns with the expected negative signs, though these coe¢ cients are not

statistically signi�cant in this multivariate panel regression. The largest standardized coef-

�cients are those for �rm-speci�c log book-to-market (0:037 = 0:83 � 0:045), pro�tability

(0:043), and investment (�0:048). These predictors have standardized impacts of 3.7% to

4.8% on expected one-year log returns.

The second column of Table 2 shows the regressions predicting log earnings at the annual

frequency. The main result is that log book-to-market ratio is by far the strongest predictor

of log earnings. The coe¢ cient on lagged lnBM is �0:143, which is a standardized coe¢ cient

of �0:119. The two other strong predictors of log earnings are the logs of �rm-level returns

and pro�tability, which have standardized coe¢ cients of 0:060 (0:507 � 0:118) and 0:037.

Other signi�cant predictors of log earnings include the logs of �rm-level issuance, size, and

past earnings. Each of these variables exhibits a standardized impact of 1.3% to 1.4%.

The third column in Table 2 shows the implied coe¢ cients of each lagged characteristic

in a regression predicting log book-to-market ratios. Log book-to-market ratios are quite

persistent as shown by the 0:846 coe¢ cient on lagged log book-to-market. More interestingly,

log investment and log issuance are signi�cant positive predictors of log book-to-market,

meaning that market-to-book ratios tend to decrease following high investment and issuance.

These relations play a role in the long-run dynamics of expected log earnings and log returns

of �rms with high investment and issuance. Analogous reasoning applies to the positive
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coe¢ cient on lagged log returns, which is statistically signi�cant at the 5% level.

Table 3A shows regressions of �rm characteristics on lagged characteristics and lagged

book-to-market ratio. The most persistent characteristic is log �rm size, which has a per-

sistence coe¢ cient of 0:973. We can, however, reject the hypothesis that this coe¢ cient is

1:000, based on standard errors with �rm and year clustering. The persistence coe¢ cients on

the logs of pro�tability, issuance, and realized variance range between 0:678 and 0:711. The

persistence coe¢ cients on the log of investment is just 0:154. All else equal, characteristics

with high (low) persistence coe¢ cients will be more important determinants of long-run cash

�ows and discount rates. Lagged log book-to-market is a signi�cant predictor of the logs of

pro�tability, investment, issuance, and realized variance, but the incremental explanatory

power from lagged valuations is modest in all regressions except the investment regression.

Table 3B shows that the aggregate variable, the lagged real risk-free rate (lnRf), is rea-

sonably persistent, though not as persistent as �rm size and valuation ratios. The persistence

of the log real risk-free rate is 0:602. This estimate has little impact on expected long-run re-

turns and cash �ows simply because the risk-free rate is not a signi�cant predictor of returns

or cash �ows, as shown in Table 2.

We now translate the VAR coe¢ cients into estimates of the discount rate components

of �rms�log book-to-market ratios. Figure 2A plots the patterns in the implied cumulative

coe¢ cients for predicting log returns at horizons (N) ranging from 1 to 20 years. We compute

the cumulative coe¢ cients for predicting log returns by summing expected log returns across

horizons, discounting by �, enabling us to express the N -year discount rate component

(gDR(N)i;t ) as: gDR(N)i;t = Et
NP
j=1

�j�1~ri;t+j; (16)

where a tilde above a variable refers to its demeaned value. Similarly, Figure 2B plots the

cumulative coe¢ cients for predicting log earnings at horizons from 1 to 20 years. We obtain

the N -year cash �ow component of valuations (gCF (N)i;t ) from the equation:
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gCF (N)i;t =
NP
j=1

�j�1Et [eei;t+j] : (17)

These cumulative coe¢ cients allow us to represent the discount rate and cash �ow com-

ponents in log book-to-market ratios from years 1 through 20 as a¢ ne functions of the

characteristics in year 0. Appendix B explains how to computegCF (N)i;t and gDR(N)i;t in terms

of the VAR coe¢ cients and �rm characteristics.

Figure 2 shows that book-to-market and size are the most important predictors of long-

run discount rates. The 20-year coe¢ cient on log book-to-market is 25.8%, while the co-

e¢ cient on log size is -13.6%. The high persistence of both variables implies that their

long-run impacts on valuation are much larger than their short-run impacts. In contrast,

some e¤ective predictors of short-run returns, such as log investment, have little long-run

impact mainly because they are not highly persistent. In addition, investment positively

predicts book-to-market ratios, which limits the extent to which its long-run impact can be

negative. The long-run value and size coe¢ cients imply that investors heavily discount the

cash �ows of value �rms, whereas they pay more for the cash �ows of large �rms. Other

notable predictors of 20-year cumulative log returns include log �rm pro�tability and real-

ized variance, which have coe¢ cients of 12.1% and -8.6%, respectively. The negative e¤ect

of realized variance could arise because of the di¤erence between expected log returns and

log expected returns, or because realized variance negatively forecasts returns as found in

Ang et al. (2006).

Figure 3 shows that book-to-market and size are also the most important predictors of

long-run cash �ows. The coe¢ cients on log book-to-market and log size are -58.7% and

-14.1%, respectively, for predicting cumulative log earnings at the 20-year horizon. Interest-

ingly, log issuance, which positively predicts log earnings at the one-year horizon, is actually

a negative predictor of long-run cash �ows. This pattern is another consequence of the

joint dynamics of issuance and book-to-market, as noted above. Imposing the present-value

relation is essential for inferring the long-run dynamics of cash �ows and returns.
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To illustrate the importance of using long-run discount rates, we consider two alternative

ways of computing a �rm�s discount rate. We contrast annualized in�nite-horizon (i.e.,

long-run) coe¢ cients based on the VAR with naive discount rates obtained by extrapolating

short-horizon regressions. We compute the naive discount rate by extrapolating the one-

year discount rate (expected log return), assuming expected log returns are constant at the

one-year rate inde�nitely. Thus, the naive rate is simply the one-year discount rate, gDR(1).
The long-run discount rate is the annualized in�nite-horizon discount rate component of

�rms� valuation ratios, (1 � �)gDR, which takes into account the joint dynamics of �rm
and common characteristics and gDR is de�ned in Appendix B as the limit of gDR(N) as N
approaches in�nity.

In Table 4, we present the short-run and long-run discount rates (gDR(1) and (1� �)gDR)
along with standard errors in parentheses. The short-run standard errors are the same as

those in the log return regression in the VAR. We compute the long-run standard errors by

applying the delta method to the covariance matrix of the estimated A matrix coe¢ cients.

The last row in the table shows that the 9.53% volatility of short-run (i.e., naive long-run)

expected returns vastly exceeds the 1.42% volatility of long-run expected returns. The long-

run standard errors are much smaller than the short-run standard errors, with the exception

of the long-run standard errors on the �rm size coe¢ cients, which are imprecisely estimated

primarily because size is extremely persistent.

Figure 4 graphically compares the impact of each characteristic on the naive and long-

run discount rates. The di¤erential impacts on the two discount rates are stark for the

investment, pro�tability, and book-to-market characteristics. For example, a one standard

deviation increase in a �rm�s log investment is associated with a 0.16% lower long-run dis-

count rate. However, if one naively extrapolates the one-year discount rate, a standardized

increase in investment is associated with a 4.79% lower long-run discount rate. These mag-

nitudes demonstrate that applying the wrong discount rate has severe consequences for �rm

and project valuation. Notably, the valuation error from extrapolation is small in the case
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of size because the extremely high persistence of �rm size is reasonably consistent with the

extrapolation assumption.

In summary, naive extrapolation of short-run discount rates produces erroneously high

valuations for �rms with high investment, low pro�tability, and low market-to-book ratios.

For example, naive overvaluation is severe for unpro�table growth �rms that invested ag-

gressively during the technology boom of the late 1990s.

5 Firm-level Analysis

We now examine the decomposition of �rms�log book-to-market ratios and returns implied

by the regression results. We �rst analyze the correlations and covariances between total log

book-to-market (lnBM) and its two components (CF and DR). Panel A of Table 5 shows

that DR and CF variation respectively account for 19.0% and 47.3% of variation in valuation

ratios. Interestingly, covariation between DR and CF tends to amplify return variance,

contributing a highly signi�cant amount (33.8%) of variance. The last column shows that

the correlation between the CF and DR components is negative and large at �0:564. In

economic terms, this correlation means that low expected cash �ows are associated with

high discount rates.

Panel B reveals a similar variance decomposition for �rm returns. In particular, discount

rate and cash �ow shocks respectively account for 20.9% and 52.2% of return variance, and

their covariance accounts for the remaining 27.0% of variance. The negative correlation

between CF and DR shocks is pronounced at �0:409. The negative correlation in cash �ow

and discount rate shocks could arise for behavioral or rational reasons. Investor overreaction

to positive �rm-speci�c cash �ow shocks could lower e¤ective �rm discount rates (negative

discount rate shocks). Alternatively �rms with negative cash �ow shocks could become more

exposed to systematic risks, increasing their discount rates (positive discount rate shocks).

Our decomposition indicates that discount rate variation is somewhat more important than

suggested by prior studies, such as Cohen, Polk, and Vuolteenaho (2003).
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A stylized example of an economy sheds light on the �nding that discount rate variation

contributes signi�cantly to variation in valuations. Suppose the economy consists of four

�rms with cash �ow (CF ), discount rate (DR), and log book-to-market ratios (bm = DR�

CF ) given by:

CF1 = 0; DR1 = 1; bm1 = 1 (18)

CF2 = �1; DR2 = 0; bm2 = 1 (19)

CF3 = 2; DR3 = 1; bm3 = �1 (20)

CF4 = 1; DR4 = 0; bm4 = �1 (21)

Applying the sorting method of Cohen, Polk, and Vuolteenaho (2003) to this economy, we

group �rms 1 and 2 together into a high bm portfolio and �rms 3 and 4 together into a low

bm portfolio. Grouping the �rms and averaging their returns and earnings eliminates the

variation in CF and DR within groups of �rms with the same valuation. The high and low

(H and L) bm portfolios have the following properties:

CFH = �0:5; DRH = 0:5; bmH = 1 (22)

CFL = 1:5; DRL = 0:5; bmL = �1 (23)

There is no discount rate variation at all across the two portfolios, which vary only in their

cash �ows. Based solely on this information, the natural but mistaken inference would be

that cash �ows account for 100% of variation in valuations.

In contrast, our regression approach considers each �rm as a distinct observation and

allows �rms to di¤er along multiple dimensions, not just in their valuations. By controlling

for bm in our regressions, we explicitly consider whether other �rm characteristics capture

variation in �rms�cash �ows and discount rates. For example, if �rms with the same valua-

tions in the economy above di¤er in their observed pro�tability, our method would correctly

identify all cash �ow and discount variation.
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Prior research that sorts �rms into bm portfolios cannot assess the correlation between

the cash �ow and discount rate components. This correlation is likely to be close to �1

across book-to-market sorted portfolios, assuming that cash �ows and discount rates both

contribute at least somewhat to variation in valuations. One needs to analyze variation

in �rm characteristics other than book-to-market to evaluate the correlation between the

components of valuations.

6 Portfolio-level Analysis

Now we analyze the implied discount rate (DR) and cash �ow (CF) variation in returns to

important portfolios, including the market portfolio and factor portfolios formed by cross-

sectional sorts on value, size, pro�tability, investment, and issuance. We compute weighted

averages of �rm-level DR and CF estimates to obtain portfolio-level DR and CF estimates.

We apply the approximation and aggregation procedure described in Section 2.

6.1 The Market Portfolio

We de�ne the market portfolio as the value-weighted average of individual �rms. We obtain

�rm-level expected log returns and log earnings from the VAR and apply the procedure in

Section 2 to obtain the corresponding market-level discount rates and expected cash �ows.

We compare the estimates from our aggregation approach to those from a standard

aggregate-level VAR in the spirit of Campbell (1991). In the aggregate VAR, we use only

the logs of (market-level) book-to-market ratio (lnBM_mkt) and the real risk-free (lnRf) as

predictors of the logs of market-level earnings and returns. Accordingly, this speci�cation

entails just three regressions in which market-level earnings, returns, and risk-free rates are

the dependent variables and lagged book-to-market and risk-free rates are the independent

variables.

We validate our panel VAR approach and compare it to the market-level VAR in Figure

5, which shows market cash �ow and discount rate components from both VARs alongside
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realized market earnings and returns over the next 10 years. We construct the series of

10-year realized earnings (returns) based on �rms�current market weights and their future

10-year earnings (returns). Thus, we forecast 10-year buy-and-hold returns to the market

portfolio, not the returns to an annually-rebalanced trading strategy. We do not rebalance

the portfolio because the underlying discount rate estimates from the panel VAR are speci�c

to �rms. This distinction is important insofar as �rm entry, exit, issuance, and repurchases

occur.

The red and black lines in the top plot in Figure 5 are the predicted 10-year market

earnings from our panel VAR and from the market-level VAR, respectively. Both predictions

track realized 10-year market earnings very well, with an R2 of 64:9% for the panel VAR and

55:4% for the market VAR. The bottom plot in Figure 5 shows that the predictions of 10-

year returns from the two VARs are also similar, except that the panel VAR predicts lower

returns around the 2000 period. Both sets of predictions exhibit positive relationships with

realized 10-year returns. The R2 of the panel VAR is 36:3%, whereas the R2 of the market-

level VAR is 19:1%. The plots in Figure 5 suggest that both VAR methods yield meaningful

decompositions of valuations into CF and DR components. Even though the panel VAR does

not directly analyze the market portfolio, aggregating the panel VAR�s �rm-level predictions

results in forecasts of market cash �ows and returns that slightly outperform forecasts based

on the traditional approach.

Next we compare the implications of the two VARs for the sources of market returns.

We compute the shocks to market cash �ows and discount rates from both VARs, as in

Equations (56) and (57) in Appendix B, and analyze the covariance matrix of these shocks.

When calculating the aggregated panel VAR shock from time t to time t + 1, the updated

expectation is based on the �rms in the market portfolio at time t. Similarly, the shock from

time t+ 1 to t+ 2 is based on the �rms in the market portfolio at time t+ 1.

Table 6 presents variance decompositions of market returns based on the panel VAR and

the market-level VAR. The �rst four columns decompose the variance of predicted market
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returns from our approximation into four nearly exhaustive components: the variance of DR,

variance of CF, variance of the cross term (CF*DR), and the covariance between CF and

DR. We do not report the covariances between the cross term and the CF and DR terms

because these covariances are small. The �fth column reports the correlation between the

DR and CF components of market returns. The last column reports the correlation between

our approximation of market returns and actual market returns. This column shows that

correlation is 0:986, indicating that our approximation is accurate. Standard errors based

on the delta method appear in parentheses.

Table 6 shows that the panel and market-level VARs predict similar amounts of discount

rate variation (18.3% and 28.1%, respectively), but the estimate from the panel VAR is more

precise as measured by its standard error. Both estimates of DR variation are lower than

those reported in prior studies. By restricting the sample of the market-level VAR to 1964 to

1990, we can reproduce the traditional �nding that DR variation explains nearly all variation

in market returns.

The estimates from the panel VAR imply that shocks to market cash �ows account for

63.2% of market return variance, whereas the market-level VAR implies that CF shocks

explain just 24.8% of return variance. The two VARs also di¤er in the implied correlations

between the CF and DR components. The panel VAR indicates that the correlation is just

�0:322, whereas the market-level VAR implies a correlation of �0:892.

One possible explanation for the di¤erence in the two VARs is that the panel VAR relies

on two log-linear approximations of market returns, which could introduce errors in the

variance decomposition. However, we �nd that the predicted (log) market return based on

the panel aggregation and approximations exhibits a correlation of 0:986 with the actual (log)

market return. In addition, the cross term (CF*DR), which is unique to the approximate

panel aggregation, accounts for less than 1% of market return variance.

A more likely reason for the discrepancy is that the panel VAR employs far more predic-

tive variables than the market-level VAR, leading to a more accurate description of expected
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cash �ows and discount rates. Another possible reason is that the market-level VAR suf-

fers from two related biases induced by the reliance on market-level book-to-market ratios

(lnBM_mkt). The time-series properties of lnBM_mkt cause two problems: 1) this highly

persistent regressor causes a signi�cant Stambaugh (1999) bias given the relatively short

sample; and 2) an apparent structural break in lnBM_mkt occurs around 1990, as noted

by Lettau and van Nieuwerburgh (2008) in the context of the market price-dividend ratio,

implying that this regressor is actually non-stationary. We exclude lnBM_mkt from our

primary panel VAR speci�cation based on these considerations.

6.2 Anomaly Portfolios

We now turn to our analysis of the returns to long-short anomaly portfolios. Our goal is to

bring new facts to the ongoing debate on the sources of anomalies. We estimate the cash

�ow and discount rate components of historical anomaly returns and analyze the covariance

matrix of these shocks. We then evaluate whether theories that aim to explain anomaly

returns make reasonable predictions about the cash �ow and discount rate components of

anomaly returns.

The anomaly portfolios represent trading strategies, where the underlying �rms in the

portfolio change every year based on �rms�characteristic rankings in June. However, for

any given year, the portfolio return is driven by the cash �ow and discount rate shocks of

the individual �rms in the portfolio in that year. The �rm-level VAR allows us to relate

anomaly returns to underlying �rm fundamentals. We aggregate the �rm-level estimates

using value weights within each quintile and then analyze portfolios with long positions in

quintile 5 and short positions in quintile 1 according to �rms�characteristic rankings. The

aggregation procedure is otherwise analogous to that used for the market portfolio.

The plots in Figure 6 show that the cash �ow and discount rate components of the

value portfolio respectively forecast the 10-year earnings and returns for this portfolio. The

predictor in the top plot in Figure 6 is the di¤erence between the CF component of value
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and growth �rms. Similarly, the realized cash �ows in this plot represent the di¤erence in

the 10-year earnings of value and growth �rms. The graphic shows that predicted earnings

are correlated with future 10-year earnings, primarily in the second half of the sample. The

overall R2 is modest at 18:6%. The bottom plot in Figure 6 depicts the relationship between

the DR component of the value spread and future 10-year returns. This relationship is strong

in both halves of the sample, and the overall R2 is high at 47:1%.

Figure 7 presents the analogous R2 statistics for the cash �ow and discount rate compo-

nents of the �ve long-short anomaly portfolios and the market portfolio. The DR component

of the size anomaly portfolio forecasts its 10-year returns quite well (R2 = 61:9%), whereas

the DR component of the issuance portfolio has more modest forecasting power for 10-year is-

suance anomaly returns (R2 = 22:5%). The R2 values in Figure 7 range from 18:6% to 64:9%,

implying correlations between the CF and DR components and their realized counterparts

that range between 0:431 and 0:806. We conclude from this analysis that the aggregated

cash �ow and discount rate components plausibly re�ect the long-short portfolios�cash �ow

and discount rate components.

Panel A of Table 7 presents variance decompositions of anomaly returns for the �ve

anomalies and is analogous to Table 6 for the market. Table 7 reveals consistent patterns

across the �ve anomaly portfolios. Cash �ow variation accounts for 37.1% to 51.8% of

variation in anomaly returns, whereas discount rate variation by itself accounts for just 16.5%

to 18.1% of anomaly return variance. The covariance between CF and DR is consistently

negative, helping to explain why the covariance term accounts for 36.1% to 45.0% of anomaly

return variance. The cross term (CF*DR) accounts for only 1.7% to 3.5% of anomaly return

variance. The standard errors on the variance components never exceed 13.8% and are

typically much lower, indicating the precision of these �ndings. The last column shows that

the correlation between the approximation of anomaly returns and actual anomaly returns

always exceeds 0:9, indicating that our approximation is accurate.

The relative importance of cash �ows and the negative correlation between CF and DR
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are the most prominent e¤ects. Theories of anomalies that rely heavily on independent

variation in DR shocks, such as De Long et al. (1990), are inconsistent with the evidence in

Table 7. In contrast, theories in which CF shocks are tightly linked with DR shocks have the

potential to explain the patterns in Table 7. Rational theories in which �rm risk increases

after negative cash �ow realizations predict negative correlations between CF and DR shocks.

Behavioral theories in which investors overreact to cash �ow news are also consistent with

this evidence.

While the decompositions are quite similar across anomalies, this �nding is not mechan-

ical even though the decompositions are derived from the same VAR. The aggregation into

(long-short) portfolios diversi�es away idiosyncratic cash �ow and discount rate shocks, fo-

cusing the analysis on common cash �ow and discount rate variation within the long-short

portfolios. Ex ante, one anomaly could have a substantially larger, say, cash �ow component

or correlation between cash �ow and discount rate shocks relative to another, depending on

the cross-correlation of shocks and characteristics across the assets. Ex post, we �nd that

the decompositions are in fact quite similar across anomalies.

Panel B of Table 7 decomposes return variance of in-sample mean-variance e¢ cient port-

folios. The �rst line shows the decomposition for the mean-variance e¢ cient (MVE) portfolio

composed of only the long-short anomaly portfolios. An arbitrageur would hold this port-

folio if one thinks of anomalies as arising from mispricing. This MVE portfolio has a cash

�ow component of 19%, a discount rate component of 52%, with a correlation of cash �ow

and discount rates of �0:56. Thus, aggregating across anomalies does not materially a¤ect

the variance decomposition. Cash �ow shocks remain the most important, and the correla-

tion between cash �ow and discount rate shocks remains strongly negative. The next line

shows the in-sample mean-variance e¢ cient portfolio that inclues the market portfolio. This

portfolio represents an estimate of the portfolio with a return that covaries most negatively

with the marginal agent�s marginal utility. The cash �ow component of this MVE portfolio

is even stronger at 82%. Discount rate variation accounts for 17% of return variance, and
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the correlation between CF and DR shocks is much weaker at �0:16.

Panel A of Table 8 displays correlations between the components of market returns and

those of anomaly returns. The four columns indicate the correlations between market cash

�ow and discount rate shocks and anomaly cash �ow and discount rate shocks. Standard

errors based on the delta method appear in parentheses.

The striking result in the �rst column of Panel A of Table 8 is that none of the �ve anomaly

cash �ow shocks exhibits a large correlation with market cash �ows. The correlations between

market cash �ows and the cash �ows from the value, investment, and size anomalies range

between �0:01 and 0:06 and are statistically indistinguishable from zero. The correlation

between market cash �ows and issuance cash �ows is also statistically insigni�cant, though

it is slightly larger at 0:23. Only the correlation between pro�tability cash �ows and market

cash �ows is statistically signi�cant, though its economic magnitude is just �0:17. These

�ndings cast doubt on theories of anomalies that rely on cross-sectional di¤erences in �rms�

sensitivities to aggregate cash �ows. The evidence is ostensibly inconsistent with a broad

category of risk-based explanations of anomalies, which includes Lettau andWachter�s (2007)

theory of the value premium.

The fourth column in Table 8 reveals that discount rate shocks to the value, investment,

and size anomalies are only weakly correlated with discount rate shocks to the market.

However, two anomalies�DR shocks exhibit correlations with market DR shocks that are

insigni�cantly di¤erent from zero at the 5% level. Market DR shocks are negatively correlated

(�0:34) with DR shocks to the pro�tability anomaly and positively correlated (0:48) with

DR shocks to the issuance anomaly. One interpretation is that �rms with low pro�ts and

high equity issuance have a cost of capital that depends critically on the market-wide cost

of equity capital. Such �rms could be highly dependent on external equity �nance. If so,

shocks to the market risk premium could drive variation in these �rms�costs of capital.4

4The second and third columns in Table 8 indicate that there are few large cross-correlations between
market DR and anomaly CF shocks or between market CF and anomaly DR shocks. All correlations are
less than 0:4 in absolute value. However, �ve correlations exceed 0:3 in absolute value, and these �ve are
statistically signi�cant at the 5% level. The correlations between the market CF shock and the size and
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Panel B of Table 8 shows the correlation between the CF and DR shocks to the MVE

portfolio based only on anomaly long-short portfolios with the market CF and DR shocks.

The correlation of CF shocks to this arbitrageur portfolio with market CF shocks is close to

zero (0:08), whereas the correlation between DR shocks is actually negative at �0:20. Thus,

we �nd little evidence that cash �ow betas with respect to the market are the source of

anomaly risk premiums. We also �nd no evidence that anomaly returns are exposed to the

same shocks to risk preferences as market returns. Instead, the evidence suggests distinct

forces drive market and anomaly return components. An exception is the correlation between

anomaly MVE CF shocks and market DR shocks, which is large and positive (0:45). One

might expect such a correlation if, say, high anomaly returns makes investors withdraw funds

from passive market strategies and move them into anomaly-based strategies.

Generalizing from the last column in Table 8, the weak correlation between most anom-

alies�DR shocks and market DR shocks is inconsistent with theories of common DR shocks.

In theories such as Campbell and Cochrane (1999), commonality in DR shocks occurs be-

cause risk aversion varies over time. Similarly, theories in which anomalies are driven by

common shocks to investor sentiment, such as Baker and Wurgler (2006), that a¤ect groups

of stocks and the market are at odds with the evidence on the lack of correlation in anomaly

and market DR shocks.

In fact, Figure 8 plots CF shocks to the market vs. CF shocks to the anomaly MVE

portfolio (Panel A), as well as the corresponding DR shocks (Panel B). In the �nancial crisis

of 2008-2009, both the market and MVE exhibited negative CF shocks and positive DR

shocks, though e¤ects were more pronounced for the market. In contrast, during the dot-

com boom of the late 1990s and the ensuing crash, the market CF and DR shocks diverge

issuance DR shocks suggest that small �rms and those with high equity issuance have lower costs of capital
during good economic times. The correlations between the value, investment, and issuance CF shocks and
the market DR shock are consistent with the idea that �rms with high investment and equity issuance
and low valuations have higher expected cash �ows when market-wide discount rates fall. Because we are
simultaneously testing many hypotheses, we are reluctant to overinterpret these cross-correlations. The low
correlation between market and anomaly return components is consistent with theories in which idiosyncratic
cash �ow shocks a¤ect �rms�expected returns� e.g., Babenko, Boguth, and Tserlukevich (2016).
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from those of the anomaly MVE portfolio. In the boom, market DR shocks were negative,

while anomaly MVE DR shocks were positive, with the opposite pattern holding for the

crash. This pattern re�ects the success of low investment, low pro�tability, and low book-

to-market �rms during the dot-com boom, and their poor performance during the crash.

Tables 9A and 9B respectively report correlations among the anomaly CF shocks and

among the anomaly DR shocks. Several of the correlations in both panels of Table 9 are sta-

tistically and economically signi�cant. Notable negative correlations include those between

investment and book-to-market, size and book-to-market, issuance and book-to-market, and

issuance and pro�tability. Notable positive correlations include those between issuance and

investment, size and investment, and pro�tability and investment.

However, nearly all of these correlations among return components simply re�ect corre-

lations among anomalies�total returns. For example, Table 9A shows that the CF shocks

to the investment and book-to-market anomalies exhibit a strong negative correlation of

�0:66. Table 9B shows that the DR shocks to these anomalies exhibit a similarly strong

negative correlation of �0:62. The signi�cant correlations in the two panels follow a strong

pattern: the pairwise anomaly CF correlations are very similar in sign and magnitude to the

pairwise anomaly DR correlations. Correlations in anomaly returns that apply to both the

CF and DR shocks often arise because many of the same �rms appear in multiple anomaly

portfolios. Consistent with this interpretation, the notable correlations in Tables 9A and 9B

typically have the same sign as the corresponding correlations in Table 1B, which reports

the relationships between �rm characteristics underlying the anomalies. We conclude that

there is little commonality in the components of anomalies�returns beyond that arising from

mechanical relationships.
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7 Alternative Speci�cations

Here we consider two alternative VAR speci�cations in which we include the market-wide

valuation ratio along with interactions with �rm-level characteristics.5 Market valuations

could capture common variation in �rms� cash �ows and discount rates and interactions

with �rm characteristics could capture �rms�di¤erential exposures to market-wide variation.

The �rst alternative speci�cation (Spec2) adds only the market-wide book-to-market ratio,

as measured by the value-weighted average of sample �rms�log book-to-market ratios, to

our main speci�cation (Spec1). The second alternative speci�cation (Spec3) augments the

�rst by including interaction terms between market-wide valuations and the �ve �rm-level

log characteristics as well as �rm-level log realized variance.

The estimation of the key return and cash �ow forecasting regressions in the VAR indi-

cates that these additional regressors only modestly contribute to explanatory power. The

adjusted R2 in the return regression increases from 4:6% in Spec1 to 5:5% in Spec2, and

the coe¢ cient on the added market-wide valuation variable is only marginally statistically

signi�cant (p-value = 0:053). In the earnings regression, the coe¢ cient on market-wide val-

uation is robust statistically signi�cant at the 1% level, but the adjusted R2 barely increases

from 24:3% in Spec1 to 24:9% in Spec2. The �ndings for the second alternative speci�ca-

tion, Spec3, suggest that the six interaction terms do not contribute incremental explanatory

power beyond Spec2. Speci�cally, the adjusted R2 for the return and earnings regressions

are equal to or less than those for Spec2 and the vast majority of the interaction coe¢ cients

are statistically insigni�cant. Overall, these two sets of regressions do not provide strong

evidence that the more parsimonious primary speci�cation, Spec1, is misspeci�ed.

We now evaluate the implications of the alternative speci�cations for return variance

decompositions. Table 10 shows the components of market return variance implied by Spec2

and Spec3. The di¤erence between Table 10 and Table 6A, which shows the results for Spec1,

5In unreported tests, we explore speci�cations that include additional market-level and anomaly-level
variables, such as aggregate versions of anomaly characteristics and spreads in valuations across anomaly
portfolios.
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is striking. Whereas discount rate variation accounts for just 18.3% of return variance in

Spec1, it accounts for 91.7% and 105.8% of variation in Spec2 and Spec3, respectively.

The main reason is that high market-wide book-to-market ratios apparently forecast higher

returns and such valuations ratios are highly persistent, implying that their long-run impact

is potentially large. However, this predictive relationship is quite weak statistically, so the

standard errors on the variance decompositions are enormous in Spec2 and Spec3. In fact,

one cannot reject the hypothesis that DR variation accounts for 0% of variation in returns.

Thus, the striking di¤erences in point estimates across the speci�cations do not necessarily

imply strikingly di¤erent conclusions.

Table 11 shows the components of anomaly return variance implied by Spec2 and Spec3.

Comparing Tables 11 and 7, we see that cash �ow variation accounts for the bulk of anomaly

return variance in all three VAR speci�cations. The �nding that discount rates are negatively

correlated with expected cash �ows also generalizes from Spec1 to Spec2, but it does not

obviously apply to Spec3, which allows for interaction terms between market-wide valuations

and �rm-level characteristics. The standard errors in Spec3 are too large to draw reliable

inferences about this correlation.

To assess which VAR speci�cation provides the most meaningful decomposition of market

and anomaly returns, we analyze the long-term forecasting power implied by each speci�ca-

tion. Figure 9 shows the 10-year forecasts of market earnings and returns from Spec2, just as

Figure 5 shows these forecasts for Spec1. Although adding market-wide valuations slightly

improves the forecasting power in the one-year earnings regression, 10-year predictions based

on the Spec2 model are vastly inferior to those based on the more parsimonious Spec1 model.

The adjusted R2 values of 65% for Spec1 compared to just 5% for Spec2 con�rm the visual

impression from the �gures. The two speci�cations exhibit little di¤erence in their ability to

predict 10-year market returns (R2 = 36% for Spec1 vs. R2 = 33% for Spec2).

Figure 10 shows the 10-year forecasting power of the three speci�cations for market earn-

ings and returns as well as the earnings and returns of the �ve anomalies. The most notable
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di¤erence arises in the forecasting power for market earnings. Both speci�cations that in-

clude market-wide valuations give rise to especially poor forecasts of 10-year market earnings.

Apparent structural breaks in market-wide valuations, such as those proposed by Lettau and

van Nieuwerburgh (2008), could help explain the poor long-term forecasting power of these

two VAR speci�cations. There are few notable di¤erences in the three speci�cations�abili-

ties to predict long-term anomaly returns and earnings. This similarity is not surprising in

light of the similar anomaly return decompositions predicted by the three speci�cations. We

conclude that the more parsimonious Spec1 not only gives rise to the most precise estimates

of market and anomaly return components, but it also exhibits the most desirable long-term

forecasting properties.

8 Conclusion

Despite decades of research on forecasting short-term stock returns, there is no widely ac-

cepted explanation for observed cross-sectional patterns in stock returns. We provide new

evidence on the sources of anomaly portfolio returns by aggregating �rm-level cash �ow and

discount rate estimates from a panel VAR system. Our aggregation approach enables re-

searchers to study the components of portfolio returns, while avoiding the biases inherent in

analyzing the cash �ows and discount rates of rebalanced portfolios.

We contribute three novel �ndings to our understanding of stock return anomalies. First,

cash �ow variation is the primary driver of anomaly returns. Second, discount rate variation

ampli�es cash �ow variation in that the shocks are strongly negatively correlated. Third,

unconditionally, there is little commonality in market and anomaly cash �ow or discount

rate shocks. In fact, discount rate shocks to the market are slightly negatively correlated

with discount rate shocks to a mean-variance e¢ cient portfolio of anomalies, casting doubt

on theories in which time-varying aggregate risk aversion or sentiment of the marginal agent

plays a prominent role. Based on this evidence, the most promising theories of anomalies are

those that emphasize the importance of �rm-level cash �ow variation as a driver of either
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changes in �rm risk or errors in investors�expectations.
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Appendix A: Cash Flows vs. Discount Rates of Trading Strategies

Here we show that the cash �ows and discount rates of rebalanced portfolios, such as

anomaly portfolios, can di¤er substantially from those of the underlying �rms in the portfo-

lios. We provide examples below in which �rms have constant cash �ows, but all variation

in returns to the rebalanced portfolio comes from cash �ow shocks.

We �rst consider a stylized behavioral model of stock returns and cash �ows. Assume

that all �rms pay constant dividends:

Di;t = �d: (24)

Assume that investors in each period erroneously believe that any given �rm�s dividend

is permanently either dL < �d or dH > �d. We de�ne the �rms associated with low (high)

dividend beliefs to be value (growth) �rms. The pricing of these �rms satis�es:

P value =
dL
R� 1 ; (25)

P growth =
dH
R� 1 ; (26)

where R is the gross risk-free rate. Each period, with probability q, investors switch their

beliefs about each stock�s dividends either from dL to dH or from dH to dL. Investors believe

their beliefs will last forever, whereas in reality they will switch with probability q in each

period.

Now consider a value fund that invests only in stocks that investors currently believe

will pay dividends of dL. Further assume that there are only two �rms in the economy� a

�rm that currently is a growth �rm and a �rm that currently is a value �rm. When beliefs

switch, the growth �rm becomes a value �rm and vice versa. This switch therefore induces

trading in the value fund as the fund has to sell �rms that become growth �rms and buy the

new value �rms.

Such trading has a signi�cant impact on the fund�s dividends. Suppose that the fund
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initially holds one share of the value stock, which implies that its initial wealth isW0 = P
value.

Assume investors do not switch beliefs in the next period. In this case, the fund�s gross return

is:

Rvalue1 =
P value + �d

P value

= 1 +
�d

P value
: (27)

Period 1 cum-dividend wealth is

W cum
1 = P value + �d; (28)

where ex-dividend wealth is P value and dividend is d1 = �d. Assume that beliefs switch in

period 2. Then:

Rvalue2 =
(R� 1)

�
dH
R�1 +

�d
�

dL

=
dH + (R� 1) �d

dL

=
dH
dL
+

�d

P value
: (29)

So fund wealth becomes:

W cum
2 = P value

dH
dL
+ �d:

Ex-dividend wealth is W ex
2 = P value dH

dL
, and the dividend is d2 = �d once again. The dividend

price ratio of the strategy is now:

W ex
2

d2
=
P value

�d

dH
dL
>
P value

�d
: (30)

The higher price-dividend ratio re�ects high expected dividend growth next period.

Importantly, the fund now reinvests its capital gain into the current value stock and is

able to purchase more than one share. Assuming beliefs do not switch in period 3, the fund�s
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wealth increases to:

W cum
3 = P value

dH
dL

�
1 +

�d

P value

�
= P value

dH
dL
+
dH
dL
�d: (31)

Now ex-dividend wealth is W ex
3 = P value dH

dL
and d3 = �d � dH=dL, implying that dividend

growth during this period is high as d3=d2 = dH=dL > d2=d1 = 1. The price-dividend ratio

of the strategy is now:
W ex
3

d3
=

P value dH
dL

�d� dH=dL
=
P value

�d
; (32)

meaning that the price-dividend ratio returns to its original value.

In summary, dividend growth of the dynamic value strategy varies over time, but expected

returns to the strategy are constant and given by:

E(Rvalue) = 1� q + qdH
dL
+

�d

P value

= 1� q + qdH
dL
+

�d

dL
(R� 1): (33)

A symmetric argument applies to the analogous growth strategy, which also has time-varying

dividend growth and constant expected returns. We conclude that return variation in the

dynamic trading strategies arises solely because of cash �ow shocks even though all �rms

in the economy incur only discount rate shocks. Firm-level return variation is driven by

changes in �rms�expected returns, not their dividends� which are constant.

There are no discount rate shocks to the returns of these dynamic strategies when viewed

from the perspective of an investor who invests in the value or growth funds. However, unex-

pected returns to such funds are in fact, under the objective measure of the econometrician,

due to discount rate shocks to the underlying �rms. The �rms�actual expected returns vary,

whereas their dividend growth does not.

This feature of rebalanced portfolios is not limited to the case of time-varying mispricing.
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Consider a rational model in which value �rms have riskier cash �ows than growth �rms. If

time-variation in a �rm�s cash �ow risk causes it to switch between being a value �rm and a

growth �rm, the rational model delivers the same insights as the behavioral model discussed

above.

In this example, we assume �rms�log dividend growth is:

�di;t+1 = �
1

2
�2 + �

�
�si;t"m;t+1 +

q
1� �2si;t"i;t+1

�
; (34)

where "m;t+1 and f"i;t+1gi are uncorrelated standard normally distributed shocks represent-

ing aggregate and �rm-speci�c dividend shocks, respectively. Firm exposure to aggregate

dividend shocks is:

�si;t =

8<: �H

�L

if si;t = 1

if si;t = 0
; (35)

where si;t follows a two-state Markov process where Pr fsi;t+1 = 1jsi;t = 0g = Pr fsi;t+1 = 0jsi;t = 1g =

�. For ease of exposition, set �L = 0 and �H = 1. Initially, half of �rms are in state 1, while

the other half are in state 0. If a regime change occurs, all �rms currently in state 1 switch

to state 0, and vice versa.

The log stochastic discount factor is:

mt+1 = �
1

2

2�2 � 
�"m;t+1; (36)

where we implicitly assume a zero risk-free rate and where 
 > 0 represents risk aversion.

These assumptions imply that the conditional mean and volatility of cash �ow growth is

constant. However, �rm risk varies with si;t, which determines the covariance of cash �ows

with the pricing kernel, causing time-varying �rm risk premiums.

Solving for the price-dividend ratio as a function of the state yields:

PD (si;t) = Et

"
e
� 1
2

2�2�
�"m;t+1� 1

2
�2+�

�
�si;t"m;t+1+

q
1��2si;t"i;t+1

�
(1 + PD (si;t+1))

#
= e

�
�2�si;t (1 + �PD (si;t+1 6= si;t) + (1� �)PD (si;t+1 = si;t)) : (37)
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Denote the price-dividend ratio in state j as PDj. The price-dividend relation above is a

system with two equations and two unknowns with the solution:

PD1 =
1

e
�2 � 1 (38)

PD0 = 1=� +
1

e
�2 � 1 (39)

These equations show that price-dividend ratios are higher in state 0 when dividend risk

is low than in state 1 when dividend risk is high, implying that expected returns are higher

in state 0 as expected dividend growth is constant across states. Firms�expected net returns

are:

Et [Ri;t+1jsi;t = 0]� 1 = 0; (40)

Et [Ri;t+1jsi;t = 1]� 1 = 2(e
�
2 � 1): (41)

Since PD0 > PD1, we see that Et [Ri;t+1jsi;t = 1] > Et [Ri;t+1jsi;t = 0]. Thus, �rms�price-

dividend ratios �uctuate because of shocks to discount rates, not cash �ows. Although

there are cash �ow shocks in returns arising from the contemporaneous dividend shock

(�
�
�si;t"m;t+1 +

q
1� �2si;t"i;t+1

�
), dividends are unpredictable and therefore do not induce

time-variation in the price-dividend ratio.

Now consider a value mutual fund that in each period buys �rms that are currently in

the low valuation state 1. With probability �, value �rms held by the fund will switch to

the high valuation state 0, meaning that they become growth �rms. The fund sells all �rms

in each period and reinvests the proceeds in �rms that are in the low valuation state 1.

The fund pays out all �rm dividends as they occur. The expected return to this strategy is

constant and equal to Et [Ri;t+1jsi;t = 1] � 1 = 2(e
�
2 � 1), even though all �rms�expected

returns vary over time.

We now analyze the growth of the value fund�s dividends in each period. The �rst source
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of fund dividend growth is growth in the underlying �rms�dividends, which satisfy:

Di;t+1

Di;t

= e�
1
2
�2+�"m;t+1 : (42)

The second source of fund dividend growth is growth in the number of shares of value �rms

held by the fund. If value �rms switch to growth �rms, the fund will reap a capital gain

and be able to buy more shares of the new value �rms in the following period. De�ne the

indicator variable 1si;t 6=si;t�1 as equal to 1 if there was a regime shift from period t � 1 to

period t and 0 otherwise. Accounting for both sources of growth, fund dividend growth is:

DFund
t+1

DFund
t

= 1si;t 6=si;t�1
PD0

PD1

e�
1
2
�2+�"m;t+1 +

�
1� 1si;t 6=si;t�1

�
e�

1
2
�2+�"m;t+1 ; (43)

where the term PD0
PD1

= 1+ e
�
2�1
�

represents the capital gain from the prior period. Dividends

are predictably high after high capital gains and low after low capital gains. The predictabil-

ity in dividend growth leads to a time-varying price-dividend ratio for the mutual fund, even

though its expected return is constant. Thus, discount rate shocks to the underlying value

�rms are cash �ow shocks for the mutual fund implementing a value trading strategy.

Appendix B: The Panel VAR

Our goal is to decompose anomaly returns into discount rate and cash �ow components

and identify the determinants of these components. We �rst decompose �rm returns and

valuations, and then aggregate �rm-level components to the portfolio level. We rely on the

following log-linear approximation for �rms�book-to-market ratios:

bmi;t � ri;t+1 � ei;t+1 + �bmi;t+1; (44)

where bmi;t is the log of the book value of equity to the market value of equity of �rm i in

year t, ri;t+1 and ei;t+1 are the year t + 1 log return to equity and log accounting return on
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equity (ROE), respectively. The latter is de�ned as:

ei;t+1 � ln (1 +ROEi;t+1) ; (45)

where ROEi;t+1 is �rm i�s earnings in year t + 1 divided by book value of common equity

in year t. The constant � in Equation (4) is a log-linearization constant that we set to 0:96

in practice. Our main results are insensitive to small variations in kappa, such as 0:95 or

0:97, which span the values used in prior studies. Vuolteenaho (2002) derives Equation (4)

by assuming the clean surplus accounting relation of Ohlson (1995) holds with equality:

Di;t = Ei;t ��BEi;t; (46)

where Ei;t is earnings, Di;t is dividends, and �BEi;t is the change in book equity from year

t� 1 to year t.

Taking Equation (4) as an equality and recursively substituting n times results in the

following relation between current book-to-market, the present values of earnings and returns,

and book-to-market in n years:

bmi;t =
nP
j=1

�j�1 (ri;t+j � ei;t+j) + �nbmi;t+n: (47)

Taking the limit as n approaches in�nity under the transversality condition, we obtain

the in�nite-horizon present-value equation:

bmi;t =
1P
j=1

�j�1 (ri;t+j � ei;t+j) : (48)

This relation shows that log book-to-market is approximately equal to the di¤erence between

cumulative future log returns and cumulative future log earnings.

We impose additional structure on the present-value equation by assuming that �rms�

expected log returns and log earnings are related to observable characteristics, Xi;t. We

assume the �rst element in theK�1 characteristics vector, Xi;t, is �rm i�s log book-to-market
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ratio, while the remaining elements are �rm-speci�c variables like the �rm�s pro�tability or

investment, and aggregate variables such as the risk-free rate, aggregate pro�tability, and

aggregate investment. De�ne the augmented and demeaned vector:

eXi;t =

26664
ri;t � E [ri;t]

ei;t � E [ei;t]

Xi;t � E [Xi;t]

37775 ; (49)

and let eXi;t = A eXi;t�1 + �X"i;t: (50)

Here A is a (K + 2)� (K + 2) matrix, �X is a (K + 2)� (K + 1) matrix of shock exposures

and "i;t is a (K + 1)�1 vector of standard Normal shocks. The number of shocks is one fewer

than the number of variables in eXi;t because of the present value constraint. In particular,

let �j be a (K + 2) � 1 vector with a one in the j�th row and zeros elsewhere. Now, the

unconditionally demeaned log book-to-market ratios can be written:6

fbmi;t = (�01 � �02)Et
1P
j=0

�j eXi;t+j+1 (51)

= (�01 � �02)
1

�
Et

1P
j=1

�jAj eXi;t (52)

= (�01 � �02)A (I � �A)
�1 eXi;t (53)

Thus, the present value relation links the current book-to-market ratio with future expected

returns and earnings in the form of K + 2 present-value parameter restrictions for the A

matrix and a stochastic singularity, which is why there are only K + 1 shocks in Equation

(50). In particular,

�03
eXi;t = (�

0
1 � �02)A (I � �A)

�1 eXi;t: (54)

6We demean all variables with their cross-sectional and time-series grand means for ease of exposition
and without loss of generality.
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and so

�03 = (�
0
1 � �02)A (I � �A)

�1 : (55)

We impose this restriction when estimating the coe¢ cients in the A matrix using panel

regressions based on the time-series and cross-section of stock returns and earnings.7 Fol-

lowing Campbell (1991), we decompose �rm-level book-to-market ratio into a discount rate

and a cash �ow component. The discount rate component is:

gDRi;t = Et
1P
j=1

�j�1~ri;t+j

= �01A (I � �A)
�1 eXi;t; (56)

and the cash �ow component is:

gCF i;t = Et
1P
j=1

�j�1~ei;t+j

= �02A (I � �A)
�1 eXi;t; (57)

such that fbmi;t =gDRi;t �gCF i;t. We also de�ne �nite-horizon versions of the cash �ow and
discount rate components, which we later use in Figure 2 to forecast long-horizon log cash

�ows and log returns. The N -year discount rate component (DR(N)i;t ) is:

gDR(N)i;t = Et
NP
j=1

�j�1~ri;t+j

= �01
�
I � �NAN

�
A (I � �A)�1 eXi;t; (58)

The N -year cash �ow component of valuations (CF (N)i;t ) is:

gCF (N)i;t =
NP
j=1

�j�1Et [eei;t+j]
= �02

�
I � �NAN

�
A (I � �A)�1 eXi;t: (59)

7See, e.g., Hansen et al. (2007) for further details regarding the implications of a present value constraint
in a VAR.
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We decompose the variance of book-to-market ratios into �uctuations arising from dis-

count rates and cash �ows, respectively, by noting that:

var
�fbmi;t

�
= var

�gDRi;t�+ var �gCF i;t�� 2Cov �gDRi;t;gCF i;t� : (60)

We decompose shocks to realized returns into shocks to expectations about future and current

cash �ows and future discount rates:

ri;t+1 � Etri;t+1 = (Et+1 � Et)
1P
j=1

�j�1~ei;t+j � (Et+1 � Et)
1P
j=1

�j�1~ri;t+j+1 (61)

= CF shocki;t �DRshocki;t ; (62)

where CF shocki;t � (Et+1 � Et)
1P
j=1

�j�1~ei;t+j, DRshocki;t � (Et+1 � Et)
1P
j=1

�j�1~ri;t+j+1, and both

shocks are simple functions of the VAR estimates. The variance decomposition of returns is

then:

var (ri;t � Etri;t+1) = var
�
DRshocki;t

�
+ var

�
CF shocki;t

�
� 2Cov

�
DRshocki;t ; CF shocki;t

�
: (63)

Appendix C: Relation to Equilibrium Models

The VAR o¤ers a parsimonious, reduced-form model of the cross-section of expected cash

�ows and discount rates at all horizons. Here we demonstrate that the VAR speci�cation

is related to standard asset pricing models. In well-known models such as Campbell and

Cochrane�s (1999) habit formation model and Bansal and Yaron�s (2004) long-run risk model,

the log stochastic discount factor is conditionally normally distributed and satis�es:

mt+1 = �rf;t �
1

2
k�tk2 + �0t�t+1; (64)

where �t is a K � 1 vector of conditional risk prices, �t+1 is a K � 1 vector of standard

normal shocks, and rf;t is the risk-free rate. With conditionally normal log returns, applying

the Law of One Price yields the following expression for the conditional expected log return
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of �rm i:

Et [ri;t+1] = rf;t �
1

2
vi;t + covt (mt+1; ri;t+1)

= rf;t �
1

2
vi;t + �

0
i;t�t; (65)

where vi;t � vart (ri;t+1) is �rm return variance, and �(k)i;t =
covt

�
�
(k)
t �

(k)
t+1;ri;t+1

�
vart

�
�
(k)
t �

(k)
t+1

� and �i;t =h
�
(1)
i;t �

(2)
i;t ... �(K)i;t

i0
represent �rm betas.

We make simplifying assumptions to relate this setup to the VAR speci�cation. De�ne

�rm risk premiums as z(k)i;t � �
(k)
i;t �

(k)
t and zi;t =

h
z
(1)
i;t z

(2)
i;t ... z(K)i;t

i0
. Suppose that risk

premiums, variances, and the risk-free rate evolve according to:

zi;t+1 = �z + Az (zi;t � �z) + �z;t"zi;t+1; (66)

vi;t+1 = �v + Av (vi;t � �v) + �v;t"vi;t+1; (67)

rf;t+1 = �rf + Arf (rf;t � �rf ) + �r;t"
rf
t+1; (68)

for all �rms i. Assume �rm log return on equity is also conditionally normal:

ei;t+1 = �+ xi;t + �e;t"
e
i;t+1; (69)

xi;t+1 = Axxi;t + �x;t"
x
i;t+1; (70)

where xi;t is an L� 1 vector of latent state variables determining expected return on equity.

All shocks can be correlated.

Assuming the clean-surplus model described earlier, �rm book-to-market ratios are given

by:

bmi;t = a0 + a
0
1rf;t + a

0
2zi;t + a

0
3xi;t + a4vi;t: (71)

De�ne the (2K + L+ 1)� 1 vector si;t =
�
r0f;t z

0
i;t vi;t...x

0
i;t

�0
to consist of the stacked state
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variables. We assume there exist (2K + L+ 1) observed characteristics, �i;t, that span si;t:

�i;t = A1 + A2si;t; (72)

where A2 is invertible. With the characteristic spanning assumption, �rms�book-to-market

become a function of the observed characteristics, resulting in a VAR representation of the

present-value relation. In sum, the VAR speci�cation concisely summarizes the dynamics

of expected cash �ows and discount rates, even when both consist of multiple components

�uctuating at di¤erent frequencies. The VAR yields consistent estimates even though there

is heteroskedasticity across �rms and time.

When analyzing long-short portfolios, we obtain the anomaly cash �ow (discount rate)

shock as the di¤erence in the cash �ow (discount rate) shocks between the long and short

portfolios. Taking the value anomaly as an example, suppose the long value portfolio and

short growth portfolio have the same betas with respect to all risk factors except the value

factor (say, �(2)t ). According to Equation (65), discount rate shocks to this long-short portfo-

lio can only arise from three sources: 1) shocks to the spread in the factor exposure between

value and growth �rms (�(2)value;t � �
(2)
growth;t); 2) shocks to the price of risk of the value factor

(�(2)t ); or 3) shocks to the di¤erence in return variance between the two portfolios. The

third possibility arises because we analyze log returns. Similarly, cash �ow shocks to this

long-short portfolio only re�ect these portfolios�di¤erential exposure to cash �ow factors.
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Table 1 - Summary Statistics

Table 1: Panel A shows summary statistics for �rm-level returns, cash �ows, and charac-
teristics. The �rst column lists the variables as de�ned in the text. The second column
reports the number of �rm-year observations, n. The remaining columns report the mean,
standard deviation and various percentiles of the �rm-year distribution for each variable.
Panel B provides the correlation matrix for these variables. The sample spans the years
1964 through 2015.

Panel A: N Mean SD P1 P10 P50 P90 P99

AnnRet 68; 642 12:66 50:70 �81:06 �39:82 7:69 65:60 175:00
Rf 68; 642 5:35 3:12 0:12 0:31 5:55 8:61 13:96
Volat 63; 564 38:69 16:94 15:34 21:83 35:11 58:75 102:45
SizeWt 68; 642 0:31 1:06 0:00 0:01 0:06 0:55 5:38
lnROECS 65; 277 11:29 32:27 �86:64 �11:90 10:23 36:33 117:96
lnBM 67; 299 �0:72 0:83 �3:04 �1:78 �0:66 0:29 0:98
lnME 68; 593 4:89 1:31 2:90 3:37 4:65 6:73 8:62
lnProf 66; 364 21:27 26:92 �72:50 6:39 23:33 39:14 77:92
lnInv 67; 478 16:10 28:27 �31:35 �4:87 9:91 42:83 132:75
lnIssue 64; 938 8:09 20:75 �29:03 �7:92 2:16 31:22 92:29

Panel B: 1 2 3 4 5 6 7 8 9

AnnRet (1) 1:00
Rf (2) 0:03 1:00
Volat (3) �0:15 0:00 1:00
SizeWt (4) �0:02 �0:19 �0:11 1:00
lnROECS (5) 0:13 �0:01 �0:01 0:02 1:00
lnBM (6) �0:37 0:21 �0:03 �0:14 �0:20 1:00
lnME (7) 0:23 �0:10 �0:35 0:54 0:08 �0:28 1:00
lnProf (8) 0:09 0:04 �0:25 0:07 0:21 �0:11 0:19 1:00
lnInv (9) 0:00 0:07 0:19 �0:03 0:55 �0:19 �0:03 0:02 1:00
lnIssue (10) 0:00 0:03 0:27 �0:08 0:11 �0:07 �0:10 �0:19 0:39
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Table 2 - Return and Earnings Forecasting Regressions

Table 2: The table shows the regression coe¢ cients for forecasting regressions of �rms�annual
real log returns (lnRet) and log annual real clean-surplus earnings (lnEarn) on the one-year-
lagged value of the characteristics. The rightmost column shows the implied coe¢ cients for
a regression of �rms�log book-to-market (lnBM) ratios on lagged characteristics. Beyond
lnBM, the other characteristics are log pro�tability (lnProf), log asset growth (lnInv), log
market equity (lnME), log three-year issuance (lnIssue), realized variance (lnRV), and the
log one-year real risk-free rate (lnRf). The sample spans the years 1964 through 2015.
Standard errors clustered by year and �rm appear in parenthesis. N denotes the number of
observations. The marks �+�, �*�, and �**�indicate sign�cance at the 10, 5, and 1 percent
levels, respectively.

lnRet lnROECS lnBM

Lag lnRet �0:003 0:118�� 0:126�

(0:056) (0:014) (0:055)

Lag lnROECS �0:021 �0:039� �0:019
(0:029) (0:016) (0:024)

Lag lnBM 0:045�� �0:143�� 0:846��

(0:015) (0:010) (0:019)

Lag lnProf 0:043�� 0:037�� �0:007
(0:014) (0:009) (0:020)

Lag lnInv �0:048�� 0:003 0:053��

(0:012) (0:005) (0:010)

Lag lnME �0:012 �0:013�� �0:001
(0:012) (0:004) (0:011)

Lag lnIssue �0:011+ 0:014�� 0:027��

(0:007) (0:003) (0:006)

Lag lnRV �0:036 �0:007 0:030
(0:025) (0:007) (0:021)

Lag lnRf 0:000 0:012 0:011
(0:029) (0:009) (0:024)

Constant �0:018 �0:027 �0:010
(0:059) (0:018) (0:051)

R2 0:046 0:243 0:675
N 53; 737 53; 737 53; 737
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Table 3 - Characteristic Forecasting Regressions

Table 3: Panel A shows the regression coe¢ cients for annual forecasting regressions of �rm
characteristics on their own lag as well as the �rm�s lagged book-to-market ratio. The
characteristics are log pro�tability (lnProf), log asset growth (lnInv), log market equity
(lnME), log three-year issuance (lnIssue), and realized variance (lnRV). Panel B reports the
regression coe¢ cients of the aggregate variable, the log one-year real risk-free rate (lnRf),
which is regressed only on its own lag. The sample spans the years 1964 through 2015.
Standard errors clustered by year and �rm appear in parenthesis. N denotes the number of
observations. The marks �+�, �*�, and �**�indicate sign�cance at the 10, 5, and 1 percent
levels, respectively.

Panel A: Own Lag Lag lnBM R2 N

lnProf 0:678�� �0:084�� 45:6% 54; 054
(0:045) (0:015)

lnInv 0:154�� �0:353�� 17:7% 54; 068
(0:025) (0:038)

lnME 0:973�� 0:020 91:0% 54; 099
(0:005) (0:014)

lnIssue 0:711�� �0:029�� 61:1% 54; 105
(0:010) (0:011)

lnRV 0:696�� �0:073� 50:5% 53; 695
(0:069) (0:035)

Panel B: Own Lag R2 N

Lag lnRf 0:602�� 36:3% 51
(0:183)
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Table 4 - Short-run vs. Long-run Discount Rates

Table 4: The table shows the sensitivity of short-run and long-run expected returns to
standardized increases in �rm- and market-level characteristics. Short-run discount rates
are one-year expected log returns. Long-run discount rates are the annualized discount
rate component of log book-to-market ratios, obtained from the panel VAR. The sample
spans the years 1964 through 2015. Standard errors clustered by year and �rm appear in
parenthesis. The last row indicates the total standard deviation of short-run and long-run
discount rates. The marks �+�, �*�, and �**�indicate sign�cance at the 10, 5, and 1 percent
levels, respectively.

Short-run Discount Rate Long-run Discount Rate
(Annual) (Annualized)

Lag lnRet �0:11% 0:05%
(2:42%) (0:08%)

Lag lnROECS �0:65% �0:03%
(0:90%) (0:03%)

Lag lnBM 3:81%�� 1:02%��

(1:27%) (0:21%)

Lag lnProf 4:38%�� 0:48%��

(1:41%) (0:13%)

Lag lnInv �4:79%�� �0:16%��
(1:23%) (0:04%)

Lag lnME �1:17% �0:74%
(1:15%) (0:52%)

Lag lnIssue �1:10%+ �0:05%
(0:67%) (0:06%)

Lag lnRV �3:63% �0:34%
(2:48%) (0:23%)

Lag lnRf 0:10% 0:04%
(2:90%) (0:20%)

St. Dev. of Discount Rate 9:53% 1:42%
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Table 5 - Firm-level Variance Decompositions

Table 5: Panel A displays the decomposition of the variance of log book-to-market ratios
into cash �ow (CF) and discount rate (DR) components. Variances are computed over time
and across �rms and are measured as a fraction of the variance of book-to-market ratios.
Panel B provides the variance decomposition of log returns into CF and DR components.
The sample spans the years 1964 through 2015. Standard errors appear in parentheses. The
marks �+�, �*�, and �**�indicate sign�cance at the 10, 5, and 1 percent levels, respectively.

var (DR) var (CF ) �2cov (DR;CF ) Corr (DR;CF )

Panel A:

Fraction of var (lnBM) 0:190+ 0:473�� 0:338�� �0:564+
(0:110) (0:068) (0:094) (0:295)

Panel B:

Fraction of var (r) 0:209+ 0:522�� 0:270�� �0:409�
(0:117) (0:111) (0:064) (0:160)
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Table 6 - Market Variance Decompositions

Table 6: The table shows variance decompositions of real market log returns into cash
�ow (CF) and discount rate (DR) components. Panel A shows the variance decomposition
derived from the �rm-level panel VAR, as explained in the text. Panel B shows the variance
decomposition derived from the market-level VAR, using only the market�s clean surplus
earnings, returns, and book-to-market ratio. The sample spans the years 1964 through 2015.
Standard errors appear in parentheses. The marks �+�, �*�, and �**�indicate sign�cance at
the 10, 5, and 1 percent levels, respectively.

var (DR) var (CF ) var (Cross) �2cov (DR;CF ) Corr (DR;CF ) Corr (Pred;Act)

Panel A: Panel VAR

Fraction of var (rm) 0:183 0:632�� 0:009� 0:219 �0:322 0:986��

(0:128) (0:176) (0:004) (0:237) (0:466) (0:001)

Panel B: Market VAR

Fraction of var (rm) 0:281 0:248 0:471�� �0:892��
(0:226) (0:181) (0:052) (0:148)
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Table 7 - Anomaly Variance Decompositions

Table 7: Panel A of the table shows decompositions of the variance of log anomaly returns
into cash �ow (CF) and discount rate (DR) components. The anomaly return is the di¤er-
ence between the log return of the top quintile portfolio and the log return of the bottom
quintile portfolio, where the quintile sort is based on the relevant characteristic. Panel B
shows variance decompositions of log returns to alternative mean-variance e¢ cient (MVE)
portfolios: the �rst is the in-sample MVE portfolio based on the quintile long-short anomaly
portfolios only, the second includes also the market portfolio. The sample spans the years
1964 through 2015. Standard errors appear in parentheses. The marks �+�, �*�, and �**�
indicate sign�cance at the 10, 5, and 1 percent levels, respectively.

var (DR) var (CF ) var (Cross) �2cov (DR;CF ) Corr (DR;CF ) Corr (Pred;Act)

Panel A: Individual long-short anomaly portfolios

Book-to-market:
Fraction of var (rbm) 0:176 0:459�� 0:017� 0:374�� �0:658�� 0:967��

(0:098) (0:121) (0:007) (0:046) (0:146) (0:004)

Pro�tability:
Fraction of var

�
rprof

�
0:181+ 0:466�� 0:032�� 0:361�� �0:621�� 0:882��

(0:099) (0:119) (0:009) (0:034) (0:101) (0:026)

Size:
Fraction of var (rsize) 0:165 0:371�� 0:019�� 0:384�� �0:777�� 0:938��

(0:109) (0:138) (0:007) (0:038) (0:130) (0:004)

Issuance:
Fraction of var (rissue) 0:177+ 0:483�� 0:035�� 0:450�� �0:769�� 0:958��

(0:092) (0:131) (0:012) (0:043) (0:091) (0:008)

Investment:
Fraction of var (rinv) 0:171� 0:518�� 0:018�� 0:382�� �0:641�� 0:950��

(0:083) (0:124) (0:004) (0:045) (0:120) (0:009)

Panel B: MVE portfolios

MVE portfolio, ex market:
Fraction of var(rex mktmve ) 0:186� 0:520�� 0:024�� 0:347�� �0:558�� 0:835��

(0:090) (0:108) (0:005) (0:066) (0:174) (0:031)

MVE portfolio, incl. market:

Fraction of var
�
rallmve

�
0:176 0:803�� 0:012� 0:134 �0:178 0:948��

(0:126) (0:274) (0:006) (0:328) (0:514) (0:011)
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Table 8 - Correlations between Anomaly and Market Return Components

Table 8: Panel A of the table shows correlations between market cash �ow and discount
rate shocks and the anomaly cash �ow and discount rate shocks. Panel B shows correlations
between market cash �ow and discount rate shocks and the cash �ow and discount rate
shocks of the mean-variance e¢ cient (MVE) portfolio, where the latter is constructed as the
in-sample MVE portfolio based on the quintile long-short anomaly portfolios only �thus,
the market portfolio is not included in the MVE portfolio construction. The sample spans
the years 1964 through 2015. Standard errors appear in parentheses. The marks �+�, �*�,
and �**�indicate sign�cance at the 10, 5, and 1 percent levels, respectively.

Market CF Market DR
Anomaly CF Anomaly DR Anomaly CF Anomaly DR

Panel A:

Book-to-market 0:06 �0:04 0:36�� �0:17
(0:13) (0:07) (0:10) (0:11)

Pro�tability �0:17�� 0:17+ 0:11 �0:34��
(0:04) (0:11) (0:16) (0:04)

Investment �0:01 �0:07 �0:38�� 0:17+

(0:16) (0:08) (0:08) (0:10)

Size 0:00 0:33�� 0:08 �0:04
(0:14) (0:11) (0:08) (0:14)

Issuance 0:23 �0:32�� �0:34� 0:48��

(0:14) (0:08) (0:16) (0:07)

Panel B:

MVE portfolio, ex. market 0:06 0:10 0:42�� �0:19
(0:18) (0:09) (0:12) (0:12)
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Table 9 - Correlations between Anomaly Return Components

Table 9: The table shows correlations between the cash �ow shocks (Panel A) and discount
rate shocks (Panel B) to various anomalies. The sample spans the years 1964 through 2015.
Standard errors appear in parentheses. The marks �+�, �*�, and �**�indicate sign�cance at
the 10, 5, and 1 percent levels, respectively.

Panel A: Cash Flow Shocks 1 2 3 4

Book-to-market (1) 1:00

Pro�tability (2) �0:29�� 1:00
(0:03)

Investment (3) �0:66�� 0:25�� 1:00
(0:03) (0:03)

Size (4) �0:18+ 0:25�� 0:25�� 1:00
(0:11) (0:05) (0:06)

Issuance (5) �0:27�� �0:40�� 0:52�� �0:14��
(0:03) (0:03) (0:03) (0:03)

Panel B: Discount Rate Shocks 1 2 3 4

Book-to-market (1) 1:00

Pro�tability (2) �0:30�� 1:00
(0:06)

Investment (3) �0:62�� 0:20� 1:00
(0:04) (0:08)

Size (4) �0:34�� 0:27�� 0:07 1:00
(0:02) (0:04) (0:10)

Issuance (5) �0:25�� �0:50�� 0:52�� �0:24��
(0:06) (0:04) (0:04) (0:06)
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Table 10 - Market Variance Decompositions in Alternative Speci�cations

Table 10: The table shows variance decompositions of market log returns into cash �ow (CF)
and discount rate (DR) components, derived from alternative speci�cations of the �rm-level
panel VAR, as explained in the text. Spec2 refers to the speci�cation that includes the
aggregate book-to-market ratio in the panel VAR, and Spec3 refers to the speci�cation that
in addition includes interaction terms as explained in the text. The sample spans the years
1964 through 2015. Standard errors appear in parentheses. The marks �+�, �*�, and �**�
indicate sign�cance at the 10, 5, and 1 percent levels, respectively.

var (DR) var (CF ) var (Cross) �2cov (DR;CF ) Corr (DR;CF ) Corr (Pred;Act)

Spec2 Fraction of var (rm) 0:917 0:262 0:005 �0:137 0:139 0:986��

(0:874) (0:166) (0:005) (0:906) (0:843) (0:002)

Spec3 Fraction of var (rm) 1:058 0:331 0:019 �0:261 0:221 0:986��

(2:186) (0:335) (0:060) (2:231) (1:586) (0:002)
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Table 11 - Anomaly Variance Decompositions in Alternative Speci�cations

Table 11: The table shows decompositions of the variance of log anomaly returns into cash
�ow (CF) and discount rate (DR) components. The anomaly return is the di¤erence between
the log return of the top quintile portfolio and the log return of the bottom quintile portfolio,
where the quintile sort is based on the relevant characteristic. The variance-decompositions
are derived from alternative speci�cations of the �rm-level panel VAR, as explained in the
text. Spec2 refers to the speci�cation that includes the aggregate book-to-market ratio in
the panel VAR, and Spec3 refers to the speci�cation that in addition includes interaction
terms as explained in the text. The sample spans the years 1964 through 2015. Standard
errors appear in parentheses. The marks �+�, �*�, and �**�indicate sign�cance at the 10, 5,
and 1 percent levels, respectively.

var (DR) var (CF ) var (Cross) �2cov (DR;CF ) Corr (DR;CF ) Corr (Pred;Act)

Book-to-market:
Spec2 Fraction of var (rbm) 0:091 0:669�� 0:029 0:282�� �0:571�� 0:967��

(0:080) (0:220) (0:027) (0:082) (0:170) (0:003)
Spec3 Fraction of var (rbm) 0:115 1:191 0:077 �0:107 0:144 0:967��

(0:117) (0:824) (0:221) (0:575) (0:682) (0:003)

Pro�tability:
Spec2 Fraction of var (rprof ) 0:114 0:619�� 0:043 0:302�� �0:568�� 0:886��

(0:091) (0:187) (0:031) (0:084) (0:132) (0:022)
Spec3 Fraction of var (rprof ) 0:376 0:713 0:038 �0:037 0:036 0:906��

(0:251) (0:213) (0:061) (0:338) (0:314) (0:026)

Size:
Spec2 Fraction of var (rsize) 0:079 0:608�� 0:028 0:299�� �0:681�� 0:914��

(0:084) (0:262) (0:020) (0:096) (0:158) (0:008)
Spec3 Fraction of var (rsize) 0:311 1:092 0:085 �0:221 0:190 0:919��

(0:528) (0:870) (0:186) (0:906) (0:565) (0:018)

Issuance:
Spec2 Fraction of var (rissue) 0:084 0:838�� 0:067 0:362 �0:683�� 0:957��

(0:075) (0:361) (0:065) (0:127) (0:151) (0:006)
Spec3 Fraction of var (rissue) 0:218 1:066 0:133 0:214 �0:221 0:957��

(0:170) (0:970) (0:340) (0:271) (0:321) (0:006)

Investment:
Spec2 Fraction of var (rinv) 0:083� 0:842�� 0:045 0:240+ �0:454+ 0:953��

(0:066) (0:312) (0:048) (0:135) (0:274) (0:006)
Spec3 Fraction of var (rinv) 0:103 0:912 0:054 0:134 �0:218 0:954��

(0:065) (0:720) (0:183) (0:352) (0:658) (0:008)
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Figure 1 - Regular ROE vs. Clean-Surplus ROE
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Figure 1: The top plot (plot A) shows the time-series of annual log ROE for Caterpillar
(CAT). The dashed red line shows annual log ROE based on accounting data (net income
and book equity). The solid blue line shows clean surplus ROE imputed as a residual from
the log-linear valuation model, as explained in the text. The lower plot (plot B) shows the
same for Apple (AAPL).
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Figure 2 - Cumulative Return Forecasting Coe¢ cients
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Figure 2: The plot shows the cumulative coe¢ cients of real log return forecasts based on
each characteristic (y-axis) for forecasting horizons of 1 to 20 years (x-axis), as implied by
the panel VAR. When computing the cumulative coe¢ cient, the coe¢ cient for horizon j is
multiplied by �j, where � = 0:96 as in the text. Thus, the cumulative coe¢ cient for each
horizon represents the discount rate component of log book-to-market ratio for that horizon.

64



Figure 3 - Cumulative Earnings Forecasting Coe¢ cients
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Figure 3: The plot shows the cumulative coe¢ cients of real log earnings forecasts based on
each characteristic (y-axis) for forecasting horizons of 1 to 20 years (x-axis), as implied by
the panel VAR. When computing the cumulative coe¢ cient, the coe¢ cient for horizon j is
multiplied by �j, where � = 0:96 as in the text. Thus, the cumulative coe¢ cient for each
horizon represents the cash �ow component of log book-to-market ratio for that horizon.
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Figure 4 - Naive Extrapolation of Discount Rates
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Figure 4: The �gure compares a naïve estimate of the long-run discount rate to an estimate
of the long-run discount rate based on the panel VAR. The naïve estimate is an extrapolation
of the one-year discount rate. The long-run discount rate estimate is the annualized average
of the discount rate applied to valuations implied by the panel VAR coe¢ cients. The blue
bars (leftmost in each category) are the naïve estimates, while the light red (rightmost in
each category) bars are the long-run expected returns.
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Figure 5 - Predicting 10-year Market Earnings and Returns
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Figure 5: The top plot shows realized versus predicted 10-year log clean surplus earnings of
the market portfolio. The solid blue line corresponds to realized earnings, while the dashed
red and dotted black lines represent predicted earnings from the panel VAR and market-
level VAR, respectively. The year on the x-axis is the year of the prediction -e.g., year
2005 corresponds to the 10-year realized earnings in 2006-2015. The bottom plot shows the
corresponding for 10-year log real market returns.
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Figure 6 - Predicting 10-year Value Anomaly Earnings and Returns
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Figure 6: The top plot shows realized versus predicted 10-year log clean-surplus earnings
of the long-short portfolio formed by sorting on book-to-market ratios. The solid blue line
corresponds to realized earnings, while the dashed red line represent predicted earnings from
the panel VAR. The year on the x-axis is the year of the prediction-e.g., year 2005 corresponds
to the 10-year realized earnings in 2006-2015. The bottom plot shows the corresponding for
10-year real log returns to the long-short value portfolio.
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Figure 7 - Predictive Power of Valuation Components
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Figure 7: The �gure shows the R2 statistics from regressions forecasting either 10-year
earnings or returns of portfolios. The blue (left) bars represent the predictive power of
regressions of 10-year log clean-surplus earnings on the cash �ow components of �rms�log
book-to-market ratios (CF_LR) aggregated to the relevant portfolio level. The light red
(right) bars represent the predictive power of regressions of 10-year log real returns on the
discount rate components of �rms�log book-to-market ratios (DR_LR). The portfolios are
the market portfolio (Mkt), as well as top quintile minus bottom quintile portfolios sorted
on book-to-market (B/M), pro�tability (Prof), investment (Inv), size (ME), and issuance
(Issue). See the main text for details regarding the construction of the test portfolios and
the corresponding cash �ow and discount rate components. The sample spans the years 1964
through 2015.
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Figure 8 - Market CF and DR shocks vs. anomaly MVE CF and DR shocks

Figure 8: Panel A shows the cash �ow shocks from the market and the anomaly mean-
variance e¢ cient (MVE) portfolio. The latter is constructed using only the long-short anom-
aly portfolios and in-sample MVE weights. Panel B shows the same for discount rate shocks.
The sample is annual, from 1965 through 2015.
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Figure 9 - Predicting 10-year Market Earnings and Returns in Alternative
Speci�cations
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Figure 9: The top plot shows realized versus predicted 10-year log clean surplus earnings
of the market portfolio. The solid blue line corresponds to realized earnings, while the red,
dashed line represent predicted earnings from an alternative speci�cation of the panel VAR
(v2, where the aggregate book-to-market ratio is included in the VAR). The year on the x-
axis is the year of the prediction -e.g., year 2005 corresponds to the 10-year realized earnings
in 2006-2015. The bottom plot shows the corresponding for 10-year log real market returns.
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Figure 10 - Predictive Power of Valuation Components in Alternative
Speci�cations
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Figure 10: The �gure shows the R2 statistics from regressions forecasting either 10-year
earnings (top plot) or returns (bottom plot) of portfolios. The dark blue (left) bars represent
the predictive power of regressions using long-run cash �ow or discount rate components of
the log book-to-market ratios from the main speci�cation of the panel VAR (speci�cation v1).
The red (middle) bars corresponds speci�cation v2 (adding the aggregate book-to-market
ratio to the panel VAR), while the light green (right) bars corresponds speci�cation v3 (also
adding interaction terms, as explained in the text). The portfolios are the market portfolio
(Mkt), as well as top quintile minus bottom quintile portfolios sorted on book-to-market
(B/M), pro�tability (Prof), investment (Inv), size (ME), and issuance (Issue). See the main
text for details regarding the construction of the test portfolios and the corresponding cash
�ow and discount rate components. The sample spans the years 1964 through 2015.
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