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Abstract 
 

Using monthly account level data for over 27,000 households between 2007 and 2014, this 
study evaluates a revenue-neutral municipal electricity conservation program. Rebates for the 
purchase of energy efficient appliances were financed via a small surcharge on high consuming 
households. The results demonstrate that the program mainly transferred money between resi-
dents with almost no effect on electricity consumption. Using variation in the timing of the re-
bate checks, none of the energy efficiency incentives yielded a statistically or economically 
meaningful reduction in electricity consumption compared with a counterfactual where no re-
bate was offered. Using a bunching estimator and exploiting changes in behavior around the 
high consumption threshold, a small reduction in electricity consumption is attributable to the 
surcharge, suggesting that prices are better than subsidies at reducing electricity consumption. 
Overall, the change in behavior attributable to the electricity conservation program is small, 
supporting recent evidence that many energy efficiency programs underperform in real-world 
settings. 
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Introduction 
Energy efficiency programs are popular with utilities and governments across North America. 
Between 1994 and 2012, the US spent more than $34 billion on energy conservation 
(Boomhower and Davis, 2014), including $17 billion allocated in the 2009 Recovery and Rein-
vestment Act (Allcott and Greenstone, 2017). The experience is similar in Canada with the fed-
eral government committed to “ramping up its effort to encourage building owners to invest in 
energy retrofits” (McCarthy, 2017). Growing evidence suggests that these programs deliver sub-
stantially less savings than initially promised. Yet, most research focuses on large scale, tax-fi-
nanced initiatives launched at the national or state level. Fewer studies investigate targeted city-
specific programs. It is plausible that local officials are better able to tailor critical parameters to 
specific local or regional characteristics, enabling them to achieve improved outcomes. Likewise, 
self-financed initiatives provide two instruments to achieve conservation – for example, when 
rebates for the purchase of energy efficient appliances are funded via surcharges on households 
who have high electricity consumption, both the subsidy and higher price can reduce energy 
consumption. This study uses monthly account-level data for over ten years to study the savings 
generated by a municipal electricity conservation program in Canada. The results contribute to 
and accord with the growing literature on incentivizing investments in energy efficiency but are 
among the handful focused on small-scale program design. 

Despite the popularity of energy efficiency programs, a puzzle known as the “energy efficiency 
gap” has been identified (Allcott and Greenstone, 2012). The energy efficiency gap states that 
we should observe substantially more investment in energy efficiency than we actually do. The 
basis for this claim rests on the difference between the projected cost savings from energy effi-
cient investments and the observed investments in the market: households should be more will-
ing to invest in energy efficiency than they are. The basic story is as follows. Households should 
invest in energy efficiency, for example, by purchasing more efficient appliances. Of course, 
these investments are costly for the household – high energy efficiency appliances cost more 
than low efficiency alternatives – yet the premium paid for energy efficiency purportedly re-
duces lifetime energy consumption by an amount that is greater than the initial outlay (i.e., 
price differential). Because total household energy consumption declines, utility bills decline and 
private investments in energy efficiency pay for themselves. But this behavioral response is typi-
cally not observed. Households appear to underinvestment in energy efficiency and so the en-
ergy efficiency gap refers to this underinvestment. 

The missing investment in energy efficiency has implications for social welfare. Generation of 
electricity produces environmental externalities such as emissions of carbon dioxide equivalent 
(CO2e) and other local pollutants. Climate change and local air pollution have real economic 
costs that are borne by citizens and governments. As total energy consumption declines, envi-
ronmental quality and human health improves. Stated differently, as household energy effi-
ciency improves, less total energy is needed. So, when household’s fail to invest in energy effi-
ciency, not only do they forego the private benefits, but the social benefits also fail to material-
ize. 

These unrealized social benefits have prompted governments to intervene in the energy effi-
ciency market in an attempt to promote greater investment. These initiatives take many forms. 
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The program studied in this paper is known as Hat Smart and was created by the City of Medi-
cine Hat, a municipality of approximately 60,000 people, located in the Canadian province of Al-
berta. Originally launched in 2008, Hat Smart was viewed as among Canada’s “most successful 
municipally offered program of its kind” (Row and Welk, 2011, pg.7) and, as of December 2015, 
had distributed over $4 million in energy efficiency incentives via 14,000 rebates aimed primar-
ily at reducing electricity and natural gas consumption (Hat Smart, 2017).1,2 Several features 
make Medicine Hat a unique context to study. First, the local utility is wholly owned and man-
aged by the municipal government. This is atypical in Canada, especially in Alberta, a province 
with a market focused electricity sector. Second, the climatic conditions of Medicine Hat are un-
common in Canada. Medicine Hat is among the hottest and driest cities in the country and air 
conditioning is pervasive in summer, while forced-air natural gas furnaces are almost the exclu-
sive source of heating in winter. This means that there is a large peak in summer electricity de-
mand. Finally, Hat Smart was a revenue neutral program – it is a feebate (Rivers and Schaufele, 
2017; Grant, 2017). Subsidies for energy efficiency rebates were entirely financed through a sur-
charge levied on high consumers of electricity. 

Most analyses of energy efficiency programs use engineering estimates to calculate energy sav-
ings. Projected energy savings are derived from simulation models or tests run in laboratory set-
tings. Unfortunately, engineering estimates frequently fail to account for important real-world 
features. Technologies may be installed incorrectly and households’ behaviour often changes as 
a result of incentives (Fowlie et al., 2015). A common example of an unintended behavioural 
change is colloquially known as the “beer fridge problem”: offering a rebate for energy efficient 
refrigerators often increases, rather than reduces, electricity usage because households con-
tinue to operate their old unit – i.e., households buy a new primary refrigerator, but keep their 
old unit as a secondary, “beer-fridge” (thus, the net effect is simply adding a new refrigerator to 
the grid). Upgrading is another means through which behaviour and incentives interact. Con-
sumers may purchase larger or feature-enhanced appliances because the incentive makes these 
cheaper to acquire. Appropriately evaluating programs such as Hat Smart requires measuring 
combined technological plus behaviour changes. 

Until recently, surprisingly little was known about the actual effectiveness of utility-based con-
servation programs in the real-world (Allcott and Greenstone, 2012). Research has emerged 
over the past decade suggesting that it is challenging to obtain many of the promised benefits of 
energy efficiency. Fowlie et al. (2015), for instance, evaluate a large weatherization incentive 
program in Michigan. They find that engineering models over-estimate actual energy savings by 
more than 2.5 times and that these over-estimates cannot be attributed to rebound effects or 
upgrading. Davis et al. (2014) look at appliances. They evaluate a large-scale appliance replace-
ment program that helped 1.5 million Mexican households purchase new energy efficient refrig-
erators and air conditioners (colloquially, referred to as “Cash for Coolers”). Using household 
electricity billing records, similar to those used in this study, Davis et al. find replacing a house-
hold’s refrigerator reduced electricity consumption by 11 kWh per month. In contrast, the air 
conditioner incentives led to an increase in electricity consumption of 6 kWh per month, with 

                                                           
1 This $4 million includes funds from both the Province of Alberta as well as incentives allocated to natural 
gas efficiency. 
2 In addition to the electricity policy, Hat Smart had a separate program for natural gas conservation. Only 
the electricity portion of the program is evaluated in this paper. 
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even larger increases during the summer (up to 20 kWh).3 Moreover, they explicitly state that 
their estimates are “considerably less than what was predicted ex ante by the World Bank and 
McKinsey based on engineering models that ignore behavioral responses. The World Bank 
study, for example, predicted savings for refrigerators that were about four times larger” (p. 
208). Examining the same Cash for Coolers program Boomhower and Davis (2014) find that be-
tween 69 and 84% of Mexican households were inframarginal, meaning that they would have 
purchased a new, energy efficient fridge even without the subsidy. The subsidy was, in other 
words, unnecessary to achieve improved energy conservation. Rivers and Shiell (2016) provide 
one of the few studies of a Canadian energy efficiency program. Studying incentives to replace 
forced-air natural gas furnaces between 2007 and 2011, they find that more than 70% of re-
placements would have occurred without any subsidy or tax credit and that middle and high-in-
come households were more likely to receive benefits compared with lower income families. Fi-
nally, following the financial crisis, the US Government helped state governments subsidize 
households’ purchases of energy efficient appliances through the Energy Efficient Appliance Re-
bate Program. Houde and Aldy (2017) evaluate this program and demonstrate that approxi-
mately 90% of consumers who claimed a rebate did not contribute to an improvement in energy 
efficiency. New refrigerator, clothes washer and dishwasher purchases led to an expected im-
provement in energy efficiency of 2 kWh per year at most. Rebates mainly contributed to appli-
ance upgrading, where households purchased a larger appliance or one with additional fea-
tures.4 

The emerging consensus on the efficacy of energy conservation programs appears pessimistic. 
As stated, a unique feature of Hat Smart is that it is revenue neutral: all funds allocated towards 
energy efficiency were collected from a small per kwh surcharge on high electricity demanders. 
Indeed, it turns out that this surcharge generated energy savings whereas the rebates did not. 
Nonetheless, the response to the surcharge is best characterized as trifling: in a city of 60,000, 
roughly 536MWh were conserved over 9 years. The reason that the surcharge generated more 
electricity conservation is almost entirely because there are virtually no statistically measurable 
conservation benefits from the rebates. While several point estimates suggest minor energy sav-
ings, the confidence intervals are wide. Higher prices appear to be a more effective conservation 

                                                           
3 Several features differentiate Mexico’s Cash for Coolers program from Hat Smart. First, it was a nation-
wide program, which meant that fixed administrative costs could be spread over a large number of partic-
ipants. Second, sellers needed to verify that the existing appliances met certain requirements. In order to 
qualify for rebates, for example, the old refrigerator or air conditioner needed to be operational and at 
least 10 years old. Further, the retailer needed to remove the old appliance at the time of replacement 
(old appliances were permanently destroyed). Size restrictions were also imposed and households could 
only redeem one rebate – i.e., for either a fridge or an air conditioner. Nonetheless, despite these re-
strictions, Davis et al. emphasize that “increases in appliance size and appliance features (e.g., through-
the-door ice) worked to substantially offset the potential reductions in electricity consumption” (p. 208). 
4 Often these larger fridges, dishwashers or clothes washers had a better efficiency rating per unit of ap-
pliance services (e.g., per cubic meter of fridge space), but actually required more total electricity when 
compared with the counterfactual purchase (i.e., the most likely appliance that would have been pur-
chased if there was no subsidy). 



5 
 

instrument than rebates, even in markets, such as electricity, where demand is extremely inelas-
tic. Ultimately, the results in this study show that the revenue neutral Hat Smart served to trans-
fer money between households without generating any consequential costs or benefits. 

Methodology 
This section presents an overview of the methodology used to evaluate Hat Smart. It is sepa-
rated into three parts. First, a description of the program and data are discussed. Next, the 
method used to infer benefits of the rebate payments is discussed. Finally, the measurement of 
costs and benefits of the surcharge is reviewed. It is important to emphasize that I am seeking to 
measure the effect of the surcharge and incentive payments on electricity consumption behav-
iour. As in Aldy and Houde (2017), I do not quantifying the welfare from new or upgraded appli-
ances. 

Program Structure and Data 
Hat Smart was launched in 2008. The initial program was designed in conjunction with a similar 
scheme offered by the Canadian province of Alberta. In fact, the first wave of rebate recipients 
obtained funding from both the city and province. With only minor tweaks, the basic structure 
of Hat Smart has remained constant over the seven years studied in this research.  

Hat Smart is a revenue neutral energy efficiency program. It offers rebates to rate payers for the 
purchase of a pre-defined set of efficiency investments. Specifically, it helps households “to 
make better choices regarding upgrades to their homes” (Hat Smart, 2017). Predominantly, this 
involves rebating a fixed amount of the purchase of new air conditioners, refrigerators, dish-
washers and clothes washers.5 These rebates were financed via an “Environmental Efficiency 
Charge” (ECC). The ECC is a per kilowatt-hour (kWh) surcharge levied on billable electricity con-
sumption above a 950kWh threshold. That is, if an account holder consumed, say, 1100kWh 
within a billing period, they would pay the monthly rate for the first 950kWh of consumption 
and then the monthly rate plus the ECC on the remaining 150kWh. The ECC did not vary during 
the sample period, equalling $0.0074/kWh throughout.  

Several comments on the rebates are needed. First, the funds collected from the ECC were 
placed into a pool and paid out according to a fixed budget. Once the annual rebate budget was 
exhausted, residents could no longer claim any money; thus, there was an advantage to trying 
to obtain a rebate early in the calendar year. Second, residents were not required to verify that 
they either disposed of their old energy inefficient appliance or purchased a model with en-
hanced efficiency. Rebates were given as long as the newly purchased model had an Energy Star 
rating. Third, rebates were promptly paid, usually within the month. Fourth, the city advertised 
the rebate scheme in both household electricity bills and in the local newspaper, so residents 
were largely aware of the plan. Finally, not all rebates were available in all years. For example, 
incentives for efficient clothes washer were available during the initial phase of Hat Smart but 
not in subsequent years.  

                                                           
5 A separate set of rebates were offered in natural gas conservation, but only the electricity component is 
considered in this paper. 
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The account-level data used in the study cover every household in the city from 2007 through 
2014.6 Essentially, information was provided on the billed electricity consumption for all ad-
dresses in the city. All residential accounts pay the same per kWh rate in each month, with the 
exception of the ECC, so there is no cross-sectional variation in prices. Rates do vary intertempo-
rally however. Household are billed ten times a year; so while the billing cycle does not precisely 
correspond to months, the period of observation will be referred to as a month for convenience. 
During this period all households in the city were also converted from analogue metering to digi-
tal metering. These conversions occurred over several years and it is unknown when a specific 
household switched. This conversion has implications for the analysis, as prior to the digital me-
ters, meter-readings were completely twice a year and monthly bills were based on estimated 
electricity consumption in the given month. Information is not available for the month in which 
the meters were read. 

Table 1 provides several summary statistics. During any given month, there are roughly 27,000 
accounts billed by the city. The sampled used in the regression analysis varies, but there are 
over 2.2M observations in the data. The average monthly consumption equals 663.24kWh, and 
after trimming the top and bottom one percent, had a minimum of 36 kWh and a maximum of 
2,216 kWh. The ECC surcharge was paid by 20% of households in any given month. Four types of 
rebates are examined. The table shows the conditional summary statistics (i.e., conditional on 
receiving a rebate). An average rebate of $198 was given for air conditioners, of which the vast 
majority of cheques were for $200. Only a small set of households received $50 rebates for the 
purchase of a window air conditioner unit. All recipients of dish washer cheques received an 
identical $100. There is no variation in this amount. Like with air conditioners, most recipients of 
refrigerator cheques received $200, with a small group getting $100. Thus, the mean refrigera-
tor subsidy equals $198. The most variation in rebates is for clothes washers as this program co-
incided with the provincial program. The average clothes washer rebate is $178, with a mini-
mum of $75 and a maximum of $775. 

Table 1: Summary Statistics 

  Mean Std. Dev Min. Max. 
Electricity consumption (kWh/month) 663.24 392.87 36.00 2216.00 
Share of households paying ECCa 0.20 0.40 0.18 0.24 
Rebates ($)     
 Air conditioners 198.01 17.16 50 200 
 Dishwashers 100 0 100 100 
 Refrigerators 198.25 13.11 100 200 

  Clothes washers 178.18 26.5 75 775 
a - minimum and maximum refer to monthly values   

 

  

                                                           
6 All data were provided under a strict confidentiality agreement with the City of Medicine Hat. 
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Measuring the Benefits of Hat Smart Rebates 
Conceptually, the benefits of conservation programs are easy to understand. The objective of 
Hat Smart is to reduce electricity consumption. Private benefits are therefore the dollar-valued 
amount of energy conserved. However, this only captures one part of the benefit calculation. 
Market failures are pervasive in electricity generation and therefore may justify public interven-
tion into energy conservation. A wide range of market failures have been highlighted (Fowlie et 
al., 2015). Examples include imperfect information (e.g., consumers are unaware of the benefits 
of energy efficiency), capital market failures (e.g., consumers cannot obtain financing for profita-
ble investments in efficiency), split incentive problems (Papineau, 2017) (e.g., the individual pay-
ing the utility bill may be different than the individual consuming energy) as well as a series of 
behavioural economic explanations such as myopia and inattentiveness (Allcott and Greenstone, 
2017). Market failures also entail that the public or social benefit of energy efficiency, from, say, 
reduced CO2e emissions, does not factor into private decisions to spend on more efficient 
clothes washers.  

Reduced emissions and the associated environmental and health improvements imply that pro-
grams such as Hat Smart really have two benefits that must be quantified. The first is the private 
savings from lower electricity bills. Private benefits are calculated from a reduced form regres-
sion as the amount of energy saved multiplied by the rate per kWh multiplied by the number of 
rebate receiving households. The second benefit arises from the reduction in harmful emissions. 
This includes CO2e abated and lower ambient concentrations of local pollutants. Medicine Hat 
has virtually none of the air quality issues that are prevalent in larger urban centres. As a result, 
the social benefits of energy efficiency can be limited to tonnes of CO2e abated.  

Both the private and social benefits are due to changes in energy consumption. These benefits 
are therefore directly measured as the incentive-induced reduction in electricity consumed. This 
is estimated via:  

ittiitity ετγα +++⋅= IncentiveSmart Hat  

where yit is energy consumption by household i in period t. Energy consumption is measured as 
kWh of electricity per month. This represents the energy for which a household is billed in a 
given month. The number of households, i, included in any specific econometric model changes 
based on the source of identifying variation. In the broadest model, the sample includes all 
households in Medicine Hat. Hat Smart is a voluntary program however. This means that house-
holds self-select into it. In more restricted specifications, therefore, the sample is limited to only 
those households that received an incentive for a particular category of purchase (e.g., refrigera-
tors). The rationale underlying the different samples is that selection bias poses a problem if 
those households that received a rebate for, say, a new dishwasher are fundamentally different 
than the control group (i.e., those that did not obtain a rebate). If they are fundamentally differ-
ent, it may be the case that the parameter of interest, α, will over- or under-estimate the true 
effect of Hat Smart. γi is an address fixed effect. Including γi captures a wide range of variables, 
such as a house’s square-footage and location, that are time invariant but fundamentally unob-
servable. γi alleviates many concerns over potential omitted variable bias. Time is measured as 
months-of-sample and common time-specific shocks such as weather are captured by τt, the 
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time fixed effect. εit is the error term that captures everything that varies at the household-by-
time level.  

The main source of identification exploits differences in the timing of rebate cheques condi-
tional on the time and address fixed effects. For example, one household may have received 
their rebate in January of 2012, while another obtained theirs in May of that year. An unbiased 
evaluation of Hat Smart requires that, conditional on address and time fixed effects, εit is uncor-
related with incentive payments. This assumption is reasonable especially for the restricted 
samples that exploit variation in timing of Hat Smart cheques paid for the identical types of in-
vestment (e.g., rebates on insulation). 

α is the coefficient of interest, which represents the change in energy consumption per $100 of 
incentive. 

Measuring the Economic Benefits and Costs of Hat Smart’s Surcharge 
A common misperception is that whatever money is paid to households via programs such as 
Hat Smart is a cost of the program. This is incorrect as transfers are not costs. Given Hat Smart’s 
financing structure, only features that introduce distortions in decision-making are costs. As Hat 
Smart is completely funded via a surcharge on high consumption households, economics costs 
only cost arise from the deadweight loss due to reduced demand for electricity. As with rebates, 
reduced consumption has generates social benefits. Thus, both the deadweight loss of the ECC 
as well as the social benefits from reduced electricity generation must be measured.  

Deadweight loss from surcharge 
Figure 2 illustrates the economic costs from Hat Smart using the standard supply and demand 
graph. The downward sloping blue curve is the demand curve. This represents a household’s de-
mand for electricity. The red curves then are the within month supply functions for this house-
hold. A household’s supply function depends on their total monthly consumption and the 
threshold at which the ECC kicks in. If a household consumes less than 950kWh/month. The 
standard constant rate supply curve applies to all consumption. For those households that ex-
ceed 950kWh per month, the supply curve jumps to SupplyECC for all additional consumption. Af-
ter the threshold, these high energy consuming households must pay the additional ECC fee. 
The blue triangle represents the extent to which households change their behavior – reduce de-
mand – because of the higher price for electricity. Without the fee, they would consume Q*. 
With the fee, they consume QECC. The triangle is the deadweight loss due to the energy conser-
vation surcharge; it is the economic cost of Hat Smart. Of course, this triangle only exists for 
consumption in excess of the ECC threshold. 

The size of this triangle depends on the responsiveness of demand with respect to the ECC. This 
is encapsulated in the price elasticity of demand.  
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Figure 1: Deadweight Loss due to ECC 

The deadweight loss (DWL), or costs, of Hat Smart, in single market’s price-quantity space, is cal-
culated as: 

𝐷𝐷𝐷𝐷𝐷𝐷 =
1
2
𝜂𝜂𝑄𝑄𝑝𝑝𝑝𝑝 �

𝐸𝐸𝐸𝐸𝐸𝐸
𝑝𝑝
�
2

 

where p is the per kWh price, and Q is demand above the 950 kWh/month threshold. ηQ is the 
elasticity of demand. This deadweight loss calculation assumes that the marginal utility of in-
come is constant, a reasonable assumption given the budget share of electricity.  

The deadweight loss formula hinges on the elasticity of demand and measures the gross eco-
nomic costs from Hat Smart – i.e., the costs without factoring in the social value from the reduc-
tion in electricity consumption. The elasticity of demand, whose estimation is discussed next, 
also summarizes the reduction in electricity consumption caused buy the ECC. Fewer kWh con-
sumed implies fewer tonnes of CO2e emitted. Thus the elasticity of demand permits the calcula-
tion of social benefits too. The net economic costs of Hat Smart subtract social benefits from the 
surcharge’s deadweight loss.  

Estimating the Elasticity of Electricity Demand 

Two empirical methodologies are applied to estimate the elasticity of demand for electricity. 
First, models similar to the ones estimated to evaluate the benefits of Hat Smart are formulated. 
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An important difference from those models is that the regressions required to estimate the elas-
ticity of demand have no cross-sectional variation in prices across households. This means that a 
household whose average consumption is, say, 700 kWh per month pays an identical per kWh 
price as another household with consumption of 700 kWh per month. When evaluating the ben-
efit side of the equation, it is possible for otherwise similar households to receive rebate 
cheques at different points in time and this idiosyncratic variation allows for clear identification 
of the parameter of interest. Restricting the analysis to time series variation limits the reliability 
in the elasticity estimates as it is possible for time-varying shocks that are correlated with price 
(e.g., an economic downturn) to bias the coefficients.  

As a result, an alternative “bunching estimator” is used to infer the elasticity of demand in the 
cross-section of the immediate vicinity around the ECC threshold. Bunching estimators are ap-
plied in Sallee and Slemrod (2012), Bastani and Selin (2014) and Kleven (2016). The idea is that 
the discrete jump in prices at 950 kWh, attributable to the ECC, can be exploited to infer elastic-
ity of electricity demand in the region around the surcharge. Specifically, if there is excess mass 
on the low price side of the threshold, this mass can be interpreted as a behavioural response to 
the surcharge. The elasticity takes the form: 

𝜀𝜀̂ =
𝐵𝐵� ℎ�0(𝑧𝑧∗)⁄

𝑧𝑧∗ln �𝑝𝑝1𝑝𝑝2
�

 

where z* is the price threshold, 𝐵𝐵�  is the measured excess mass to the left of the surcharge 
threshold and ℎ�0(𝑧𝑧∗) is the estimated mass that we would expect to see in a counterfactual “no 
surcharge” scenario. 𝑝𝑝1 is the price of electricity before the surcharge is levied and 𝑝𝑝2 is the 
post-surcharge price. Calculating this elasticity requires estimating several regions of the elec-
tricity demand distribution. ℎ�0(𝑧𝑧∗), in particular, is the key. This counterfactual is estimated in 
an interval around z*: [𝑧𝑧∗ −  𝛿𝛿𝑏𝑏 , 𝑧𝑧∗ + 𝛿𝛿𝑏𝑏], where 𝛿𝛿 represents the width around the threshold 
z*, b indexes the actual region considered and c will index the counterfactual region. The region 
around z* is an area where the density of electricity demand is expected to be smooth but 
where there is, in fact, bunching. Start by defining three regions: ℎ�−∗ : [𝑧𝑧∗ − 𝛿𝛿𝑏𝑏 − 𝛿𝛿𝑐𝑐 , 𝑧𝑧∗ − 𝛿𝛿𝑏𝑏], 
ℎ�: [𝑧𝑧∗ − 𝛿𝛿𝑏𝑏 , 𝑧𝑧∗ + 𝛿𝛿𝑏𝑏] and ℎ�+∗ : [𝑧𝑧∗ + 𝛿𝛿𝑏𝑏 , 𝑧𝑧∗ + 𝛿𝛿𝑏𝑏 + 𝛿𝛿𝑐𝑐]. It is possible to use the densities in each of 
these three regions to calculate the following cumulative densities: 𝐻𝐻�−∗ = 𝛿𝛿𝑐𝑐ℎ�−∗ , 𝐻𝐻�∗ = 2𝛿𝛿𝑏𝑏ℎ�∗ 
and 𝐻𝐻�+∗ = 𝛿𝛿𝑐𝑐ℎ�+∗   . Given these quantities it is possible to define actual excess mass as: 

𝐵𝐵� = 𝐻𝐻�∗ −
𝛿𝛿𝑏𝑏
𝛿𝛿𝑐𝑐

(𝐻𝐻�−∗ +𝐻𝐻�−∗ )   

And the counterfactual mass as: 

ℎ�0 =
1
2

(ℎ�−∗ + ℎ�+∗ ) 

With 𝐵𝐵�  and ℎ�0 in hand it is possible to calculated, the elasticity of demand. The masses in the 
three regions around the threshold z* - ℎ�−∗ ,ℎ� 𝑎𝑎𝑎𝑎𝑎𝑎 ℎ�+∗  - are estimated using Epanechnikov ker-
nels. A width of 45 kWh per month is used for δb. 
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Results 
Energy Savings Attributable to Hat Smart Rebates 
The change in electricity consumption for each category of rebate is shown in Table 2. For each 
class of incentive, three separate econometric models are estimated. These models are distin-
guished by the underlying source of variation that is used to statistically identify the parameter 
of interest. Column (1) uses all households in the city as a baseline. Column (2) restricts the sam-
ple to just those that received at least one electricity incentive at some point in time. The incen-
tive could have been for an appliance category that is unrelated to the received rebate. The logic 
underlying this sample restriction is that there may be some fundamentally unobservable differ-
ence between households that received a rebate and those that did not. This unobserved differ-
ence may bias the estimates and thus needs to be adjusted for. Column (3) take this one step 
further. It provides the most credible econometric identification. Column (3) focuses exclusively 
on households that receive identical rebates, but exploits differences in the timing at which 
those rebates were received. The idea is that two households that received, say, an incentive to 
purchase a new dishwasher – but where one received her cheque in January, while the other re-
ceived her rebate in June – are more similar than households who did not receive a dishwasher 
rebate.  

All econometric specifications contain household and month-of-sample fixed effects. Through-
out, all standard errors are clustered on individual addresses (i.e., at the household level). All co-
efficients should be interpreted as the reduction in kWh per $100 rebate. 

Regression results  
Table 2 presents the results. Four panels are included, one for each air conditioners, clothes 
washers, refrigerators and dish washers. 

Air conditioners. Rebates for air conditioners led to the largest reduction in electricity consump-
tion, but none of the point estimates are statistically distinguishable from zero. The baseline 
model, column (1), shows that a $100 incentive reduces monthly electricity usage by 6.8 kWh 
per month. This decreases to a statistically insignificant 5.5 kWh per month in column (2). Col-
umn (3), providing the most credible identification, shows the largest reduction in electricity 
consumption at 12 kWh per month or 144 kWh per year. Still the confidence interval is wide and 
the true value could be notably larger or smaller.  

Nonetheless, relative to the other categories of rebates, air conditioners appear to yield the 
largest reductions in electricity use. The US Department of Energy projects the typical lifespan of 
an air conditioner to be 15 to 20 years (DOE, 2017).  Assuming an air conditioner lasts for 15 
years, the total electricity savings per $100 incentive is approximately 2,160 kWh. At a rate per 
kWh of $0.08 and with a 4% discount, the private return from this $100 rebate for an energy ef-
ficient air conditioner is -31.9%. If the air conditioner’s lifespan is 20 years, then electricity sav-
ings total 1,814 kWh and the private return equals 60.7%. This suggests that investing in energy 
efficient air conditioning may be privately beneficial. Including social benefits from abated CO2e 
makes investing in air conditioner efficiency more attractive, but, to repeat, these estimates 
must be interpreted with caution due to the imprecision of the coefficients. 
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Table 2: Energy Savings Attributable to Hat Smart Rebates 
  (1) (2) (3) 
Panel A: Air conditioner rebates    

kWh per $100 incentive -6.797 -5.512 -12.0005 
 (8.105) (8.171) (8.675) 

Number of households 27,921 3,925 228 

Number of observations 2,200,266 308,069 17,295 

Panel B: Clothes washer rebates       

kWh per $100 incentive -0.035 1.251 2.068 
 (2.104) (2.386) (2.520) 

Number of households 27,921 3,925 2,435 

Number of observations 2,200,266 308,069 199,462 

Panel C: Refrigerator rebates       

kWh per $100 incentive -1.847 -3.699 -2.764 

 (3.402) (3.562) (4.813) 

Number of households 27,921 3,925 833 

Number of observations 2,200,266 308,069 65,579 

Panel D: Dishwasher rebates       

kWh per $100 incentive 0.139 0.187* 0.163* 

 (0.085) (0.088) (0.073) 

Number of households 27,921 3,925 675 

 2,200,266 308,069 53,049 

 

Clothes washers. Panel B in Table 2 presents the results for clothes washers. Column (1) shows 
that a $100 rebate decreased electricity consumption by 0.04 kWh per month. This value in-
creases to 1.3 and 2.1 kWh per month in columns (2) and (3). None of the specifications have 
coefficients that are statistically distinguishable from zero. Further, not only do the confidence 
intervals include zero, the standard errors are large. The imprecision of these estimates means 
that it is difficult to claim that rebates on clothes washers had any effect on household electric-
ity consumption. And while no evidence of an effect is different than finding no effect, the posi-
tive point estimate suggests that it is unlikely much energy savings was obtained via clothes 
washer rebates. 

Washing machines have seen some of the largest efficiency gains over the past two decades. 
Thus, this result may seem out-of-place. It is important to re-emphasize that these models are 
measuring the impact of the incentives and not the effect of the underlying technologies. 
Washer efficiency has improved, but these regressions demonstrate that the incentives did not 
induce any incremental, or marginal, improvement in efficiency. Further, while it is not possible 
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to test explicit mechanisms with the data available, it is plausible that households engaged in 
upgrading behaviour. Larger and feature-enhanced models likely replaced smaller and more 
basic appliances. This upgrading likely offset any rebate-induced improvements in energy effi-
ciency. 

Refrigerators. As with clothes washers, Panel C shows that refrigerator incentives have no sta-
tistically significant effect on electricity consumption. Again, wide standard errors make it diffi-
cult to make definitive claims. Column (1) shows a point estimate of -1.9 kWh per month from a 
$100 rebate. This increases slightly to -3.7 and -2.8 kWh per month in columns (2) and (3). While 
statistically indistinguishable from zero, these point estimates are larger than those found for 
refrigerators in Houde and Aldy (2017), but smaller than those in Davis, Fuchs and Gertler 
(2014). Ultimately, as with clothes washers, these models suggest that little energy savings are 
gained by incentivizing the purchase of energy efficient refrigerators (at least, given the existing 
structure of Hat Smart, where households were not required to remove their old fridges).  

Dishwasher. Finally, Panel D of Table 2 displays the results from the dishwasher regressions. 
Column (1) where all other households in Medicine Hat act as a control group shows that a $100 
dishwasher incentive increases electricity consumption by 0.1 kWh per month. This estimate is 
not statistically distinguishable from zero. Restricting the sample to households that received 
any rebate changes the estimate to a 0.2 kWh per month in columns (2) and (3). These two 
models do show a statistically significant increase, but the magnitudes are trivial. Model C, for 
instance, suggests that a dishwasher incentive increased electricity consumption by 0.2 kWh per 
month. In essence, given the comparatively precise standard errors, it is safe to claim that dish-
washer incentives have no meaningful effect on electricity consumption and, hence, Hat Smart 
produced no benefit from providing these rebates. 

Costs and Benefits of Hat Smart Surcharge 
Few benefits from Hat Smart rebates are identifiable in Table 2. The surcharge is investigated 
next. As described, the gross economic costs equal the deadweight loss attributable to the sur-
charge, which is a function of the elasticity of electricity demand. The elasticity estimates and 
deadweight loss are discussed first. Table 3 presents three estimates for the elasticity of electric-
ity demand with respect to price. Electricity demand is normally viewed as extremely inelastic 
with limited response to changing prices. The gross costs are not the full costs of program how-
ever. The net costs (or benefits) of Hat Smart require adjusting for the social value of reduced 
CO2e emissions. These emissions are valued using Canada’s social cost of carbon, which equals 
$40.70/tCO2e and are discussed second. 

Table 3 shows that, using time series variation, neither the short- nor long-run elasticities of 
electricity demand are statistically distinguishable from zero. In fact, the point estimates for 
both elasticities suggest that quantity demanded increases as prices increase. The point esti-
mate on the short-run demand for electricity is 0.3, implying that a 1% increase in price leads to 
a 0.3% increase in quantity demanded. The corresponding long-run estimate is also 0.3. The esti-
mates suggest two things. First, electricity demand may be extremely inelastic and it may not be 
possible to distinguish the true response from zero. In other words, the true demand response is 
very small (virtually a vertical line). If electricity demand is indeed perfectly inelastic, it implies 
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that Hat Smart effectively has no economic cost beyond its administration costs. Second, it is 
possible that other time-varying factors such as the state of the economy are correlated with 
both price and electricity demand and, as a result, the time-series coefficients are biased. Given 
the size of the standard errors, it is difficult to infer anything meaningful about consumer re-
sponses to electricity prices. 

The bottom part of Table 3 uses the cross-sectional bunching estimator to infer the elasticity of 
demand. It exploits the discontinuity in electricity pricing near the threshold for the ECC, by 
comparing the behaviour of households slightly below and slightly above the 950 kWh per 
month cut-off. As Table 3 illustrates, the elasticity of electricity demand with respect to price, in 
the cross-section, equals -0.05. This estimate is statistically significant at the 0.1% level. This im-
plies that households do, in fact, respond to prices by reducing their demand and that there is a 
cost to financing Hat Smart (as well as benefits from less electricity consumption). 

Table 3: Elasticity of Electricity Demand 
Time series variation 

Short-run elasticity 0.273  

 (0.309)  

Long-run elasticity  0.330 

  (0.372) 

Month fixed effects Y Y 

Location-year fixed effects Y Y 

Number of observations 2,200,260 2,200,260 

Cross-sectional variation 

Elasticity -0.052***  

 (0.001)  

Number of observations 43,194  

 

This bunching elasticity is used to calculate both the deadweight loss and the reduction in elec-
tricity consumption attributable to the ECC. Given the paucity of the elasticity estimate, these 
values are small. (Also, as the time series models did not yield statistically significant elasticities 
of demand, they should be used with caution and interpreted as an upper bound on the true 
costs.) The gross deadweight loss from the ECC surcharge equals a paltry $1,984.56 over the en-
tire 2008 to March 2014 period. This deadweight loss does not include any fixed or variable ad-
ministrative costs involved in managing the program, but is best labeled as tiny. The main con-
clusion is clear: the ECC surcharge on electricity generates tiny market distortions and hence fi-
nancing Hat Smart involves negligible economic costs.  

The excess burden of Hat Smart represents the gross of environmental benefits cost of the pro-
gram. Using the cross-sectional elasticity, the program also reduced electricity consumption by 
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536.37 MWh. All of Medicine Hat’s electricity is generated using natural gas. Applying NRCan 
(2018) conversion factors, the ECC reduced CO2e emissions by 108.1tCO2e. At a social cost of 
carbon of $40.70, this means that the ECC produced gross environmental benefits of $4,400.98. 
The net benefits – environmental benefits less the deadweight loss – from the surcharge then 
equal $2,416.42. Thus, while the surcharge did improve economic welfare, its chief outcome ap-
pears to involve transferring money between households in the city. 

Conclusion and Policy Recommendations 
Economists have long argued that the savings from energy conservation programs tend to be 
overstated (Joskow and Miron, 1992). These results support this. Few Hat Smart rebates has any 
statistically measurable effect on electricity consumption, but, more importantly, point esti-
mates are not economically meaningful. The surcharge levied on high consumers did produce 
net benefits, but the magnitude of these is also negligible. Indeed, Hat Smart served primarily to 
transfer money between households in the city. While perhaps disappointing, this paper fits 
within a growing swath of research emerging on the economics of energy efficiency programs. 
Unfortunately, from an efficiency perspective, this research paints a cynical picture of energy 
conservation initiatives. Utility-based and government-funded energy efficiency programs 
simply have not delivered their promised electricity reductions. This begs the question: are the 
policy tweaks that support better results? Three options are discussed: targeting and verifica-
tion, rebates conditional on energy conservation and higher prices. 

Targeting and verification. A common recommendation for energy efficiency programs is more 
precise targeting and verification (e.g., Allcott and Greenstone, 2017). Targeting is easy to un-
derstand but hard to do well. Targeting is actually is catch-all term that encompasses several 
themes. Targeting may mean that funds are directed to low income households or towards “en-
ergy hogs” – i.e., houses with unusually high consumption for their profile with the hope that 
these households have greater scope for improvement per dollar incentive. Regardless of which 
targets are selected, targeting relies on some underlying heterogeneity in the population where 
rebates induce a particular set of households to invest in energy efficiency and reduce their 
electricity consumption.  

Similar to targeting, verification may also improve program performance, especially when beer-
fridge-type problems are a concern. Verification means that program administrators require evi-
dence that old appliances are removed prior to issuing rebates. Eligibility for rebates could 
mimic the Mexican Cash for Coolers program, where recipients must demonstrate that they 
were replacing appliances that were at least 10 years old and opting for models of approxi-
mately the same size. These verification steps may mitigate energy consuming upgrading behav-
iour.  

Despite the appeal of targeting and verification, caution is warranted before pursuing these 
strategies. Simply, the payoff may not materialize. Both targeting and verification introduce ad-
ministration costs and can be unpopular with residents who are familiar with a “no questions 
asked” program. Indeed, administrators of the Hat Smart program voiced precisely this concern. 
Moreover, the additional energy savings from targeting and verification may be small. Fowlie et 
al. (2015), for example, demonstrated that a large-scale encouragement program, one targeted 
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at low income households, yielded only small gains but the costs of this encouragement were 
approximately $1000 per household.   

Payments conditional on energy conservation. Rather than directly targeting appliances or 
home heating investments, Hat Smart rebates could be directly tied to energy consumption. 
Cheques could be issued if households reduce their energy usage versus some benchmark (e.g., 
by 5% of previous year’s electricity consumption). This design could be similar to a program de-
vised by the Canadian province of British Columbia known as Team Power Smart. Team Power 
Smart is a voluntary program that offers households the opportunity to undertake annual con-
servation “challenges” (Fraser, 2017). Households that are able to reduce their annual, weather-
adjusted electricity use by 10%, relative to the previous 12 month period, receive a payment of 
$75 (Fraser, 2017).  

The advantage of this style of program is that households can choose the best method to reduce 
energy consumption, rather than being restricted to a finite set of rebates. The activities that 
would potentially earn a reward could also include behavioral change. For instance, a family that 
actively reduces its energy consumption by, say, reducing air conditioning in summer would not 
currently eligible for a Hat Smart payment. Under a redesigned scheme, this family may be able 
to make a large contribution to conservation goals and should become eligible for rebates.  

Higher prices. Finally, the main conclusion of this research is that pricing works. If policy-makers’ 
primarily concern is improving energy conservation and reducing emissions, electricity prices 
could be increased substantially. Indeed, in the case studied in this paper, the City of Medicine 
Hat appears to have significant scope to increase the price of electricity before substantial con-
sumer behavioural changes are undertaken. Higher prices mean that substantial additional reve-
nue would be collected by the utility or municipality, funds could be recycled, used to offset 
other taxes or to fund community projects. Ultimately, the experience of Hat Smart shows that 
pricing appears to work while rebates disappoint. 
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