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I propose a new methodology to identify active mutual funds that can predictively

outperform passive benchmarks due to stock-picking skills by applying a first-order

stochastic dominance (FSD) condition. The FSD condition is implemented by extract-

ing information from fund holdings to bootstrap counterfactual random portfolios with

given factor loadings and degree of diversification. A simple factor model and simulation

results show that the FSD condition complements conventional alpha-based metrics by

developing robustness to heteroscedasticity and benchmark mis-specification problems.

Empirically, the identified funds outperform passive benchmarks by large magnitudes

out of sample. Findings on fund characteristics and flows further support the results.
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1 Introduction

It is well-known that skilled active mutual fund managers who can predictably outper-

form passive benchmarks are difficult to identify.1 Current evaluation methods measure

a fund manager’s skills by comparing the time average of her returns2 to that of an

appropriately chosen benchmark. For example, fund manager i’s skills can be measured

as:

α̂i =
1

T

∑
t

(
ri,t − rbi,t

)
,

where {ri,t}Tt=1 are fund i’s realized returns3,
{
rbi,t
}T
t=1

are the returns of a passive

benchmark representing fund i’s exposure to systematic factors.

While this in-sample alpha is straightforward to construct, it has poor predictive

power of the manager’s out-of-sample alpha within the active mutual fund industry.

Table 1 replicates the Carhart (1997) regression during a recent sample period. Ac-

cording to the table, none of the post-ranking alphas of the in-sample-alpha-ranked

portfolios of funds is statistically significant at 5% confidence level. The predictive

power of the in-sample Carhart four-factor alpha for future fund performance is weak

and statistically insignificant.
1See, for example, Carhart (1997), Kosowski et al. (2006), Barras, Scaillet, and Wermers (2010),

Fama and French (2010), etc.
2All performances are before fees unless specified otherwise.
3I don’t make the distinction between fund managers and funds in this paper. I will use the term

fund managers and funds interchangeably.

2



Table 1: The Weak Persistence of Alpha

Decile α (in %) mkt smb hml umd SR IR
1 −1.37* 1.03*** 0.35*** 0.07*** 0.01 0.48 −0.41

[−1.88] [ 63.2] [ 13.4] [ 2.81] [ 0.79]
2 −0.56 1.00*** 0.21*** 0.05** 0.00 0.52 −0.19

[−0.84] [ 62.2] [ 9.13] [ 2.17] [−0.07]
3 −0.26 0.99*** 0.15*** 0.07*** 0.00 0.54 −0.10

[−0.46] [ 65.5] [ 6.37] [ 3.30] [−0.31]
4 0.08 0.98*** 0.15*** 0.05** 0.00 0.56 0.03

[ 0.15] [ 75.4] [ 8.13] [ 2.22] [ 0.02]
5 −0.16 1.00*** 0.13*** 0.06*** 0.00 0.55 −0.07

[−0.32] [ 75.5] [ 7.09] [ 2.79] [ 0.28]
6 0.07 0.99*** 0.12*** 0.04** 0.00 0.56 0.03

[ 0.14] [ 83.0] [ 6.03] [ 2.02] [ 0.27]
7 −0.08 1.00*** 0.15*** 0.04* 0.01 0.55 −0.03

[−0.16] [ 74.4] [ 6.27] [ 1.79] [ 0.87]
8 0.36 1.00*** 0.19*** 0.02 0.02 0.58 0.14

[ 0.64] [ 75.0] [ 9.27] [ 0.69] [ 1.31]
9 1.04* 1.01*** 0.23*** −0.02 0.02 0.61 0.36

[ 1.80] [ 67.6] [ 8.86] [−0.62] [ 1.55]
10 1.13 1.05*** 0.40*** −0.14*** 0.05** 0.59 0.30

[ 1.46] [ 52.9] [ 14.2] [−4.44] [ 2.32]

This table documents the before-fees performance of the trading strategy that sorts
funds by their historical alpha. By the end of each quarter, the active equity mutual
funds in the cross section are sorted into ten deciles based on the four-factor alpha
computed from their proceeding 24 months’ before-fees returns. The trading strategy
is rebalanced every three months. The post-ranking annualized before-fees alphas and
factor loadings are documented along with their heteroscedasticity-robust t-statistics.
The sample period is from January 1991 to December 2015.

The search for skilled managers based on in-sample alpha has poor out-of-sample

performance because it has little power to distinguish skill from luck given the short fund

performance histories.4 The conventional positive alpha (αi > 0) condition requires the

mean of the fund’s return to be higher than the mean of the benchmark return, i.e.

E (ri,t) > E
(
rbi,t
)
. Thus, it suffers from the empirical problem that mean is difficult

4See Kosowski et al. (2006), Fama and French (2010) and Barras, Scaillet, and Wermers (2010) for
ex post analysis.
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to estimate in finite sample, and it is relatively easy for unskilled managers to achieve

high in-sample alphas with excessive risk-taking or unobservable factor exposures5.

In this paper, I focus on a subset of skilled fund managers who generate positive

alpha by making profitable bets on firm specific risks (stock-picking), and show that a

new first-order stochastic dominance (FSD) condition can be imposed to identify such

skilled stock-pickers. The new FSD condition states that the return distribution of a

skilled stock-picker should first-order stochastically dominate that of a counterfactual

manager with similar investment style but no stock-picking skills, i.e. ri,t
fsd
� r̂i,t. The

FSD condition is a more stringent requirement than conditions focused on the mean

alone such as αi > 0, because it uses information from the entire distribution of returns

and excludes funds with heavy left tails in their return distributions due to excessive

risk-taking or unobservable factor exposures. Intuitively, the new FSD condition is

stronger than the conventional positive alpha condition but weaker than arbitrage.

The positive alpha condition states that the fund manager’s performance should be on

average better than the passive benchmark, whereas arbitrage requires the manager’s

performance to exceed the benchmark in every single period. The FSD condition, on

the other hand, identifies fund managers with high (low) probability to outperform

(underperform) the unskilled counterfactual managers.

As a methodological contribution of this paper, I construct an FSD filter to select

funds by testing the FSD condition. The test requires extending the benchmark from

a single return to a return distribution in each period. Specifically, for each

fund in each period, I draw a counterfactual return distribution from a bootstrap exer-

cise by creating replica funds with random portfolios. The replica funds maintain the

same portfolio weights as the original fund and invest in stocks with similar observ-
5See the empirical evidence documented by Chevalier and Ellison (1997) and a more recent struc-

tural estimation by Koijen (2014).
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able characteristics, so that the replica funds resemble the original fund in the degree

of diversification and loadings on observable factors.6 However, the specific choices of

stocks in a replica fund’s portfolio are determined randomly. As a result, the replica

funds inherit the characteristics of the original fund, meanwhile break the association

between portfolio weights and stock choices, which reflects the stock-picking skills of

the fund manager. The comparison between the original fund’s return and the replica

funds’ return distribution then enables the econometrician to conduct a statistical test

on the manager’s stock-picking skills in each single period with only one observation.

With repeated observations over time, the FSD filter selects funds by requiring the

percentiles of the original fund’s returns among the replica funds to first-order stochas-

tically dominate a standard uniform distribution.
6I do not make the distinction between characteristics and factor loadings in this paper as discussed

in Daniel and Titman (1997). However, the same methodology is applicable with either characteristics
or factor loadings whenever the difference between the two is important.
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Figure 1: Positive Alpha Filter VS FSD Filter

Managers E (ri,t) > E
(
rbi,t

)
Select managers
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Lucky
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(a) Positive Alpha Filter

Managers ri,t
fsd
� r̂i,t

Stock-picking

Select managers
by the FSD condition.

Skilled

Skilled

Skilled Skilled
Skilled Skilled

Skilled Skilled
Lucky

(b) FSD Filter

This figure illustrates the comparison between the positive alpha filter and the FSD
filter. Panel (a) illustrates the ineffectiveness of the positive alpha filter in identify-
ing skilled mutual fund managers; whereas Panel (b) proposes the application of the
new FSD filter. The FSD filter selects managers whose return distributions first-order
stochastically dominate counterfactual managers with similar investment styles but no

stock-picking skills, i.e. ri,t
fsd
� r̂i,t.

To understand the source of the additional statistical power that the new FSD

condition is able to provide, I conduct simulations to compare the performance of a

filter based on the conventional positive alpha condition with the performance of the

FSD filter, as illustrated in Figure 1. Simulations show that the FSD filter outper-

forms the positive alpha filter in handling two statistical problems in finite samples –

heteroscedasticity and benchmark mis-specification. The heteroscedasticity problem is

defined as idiosyncratic volatility being time-varying and more volatile than the fund’s
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true alpha. I show that the FSD filter has better performance than the positive alpha

filter with heteroscedasticity calibrated to the real-world level because the positive al-

pha filter places equal weight on all observations regardless of idiosyncratic volatility;

whereas the FSD filter places relatively higher (lower) weights on observations from

high (low) signal-to-noise ratio periods. The benchmark mis-specification problem is

defined as the situation that some managers might take on risk factors that are not

observable to the econometrician. The performance of the positive alpha filter suffers

due to the additional noise from the unobservable factors. The positive alpha filter

tends to erroneously select mis-specified managers who take on unobservable factors

with high in-sample realizations rather than the truly skilled managers who are able to

deliver positive out-of-sample alphas. The FSD filter, on the other hand, is unaffected

by this problem thanks to a detection mechanism. The unobservable factors taken by

the mis-specified managers induce heavier left tails in their return distributions com-

pared to the replica funds thereby violating the FSD condition. The FSD condition and

the positive alpha condition are not mutually exclusive. The FSD requirement comple-

ments the alpha measure by providing robustness to heteroscedasticity and benchmark

mis-specification in selecting fund managers who are good at picking stocks.

In the empirical part of this paper, I show that the FSD filter is indeed effective in

selecting skilled stock-pickers. From January 1991 to December 2015, the FSD filter

identifies a time-varying group of active mutual funds that are able to, on average,

outperform the Carhart four-factor benchmark by 203 bps (t = 2.78) per year out of

sample before management fees (78 bps (t = 1.07) per year after fees). More interest-

ingly, even though there is only weak performance persistence among all funds in the

cross section, among the funds selected by the FSD filter, the performance persistence

is much stronger with in-sample alpha being significantly predictive of out-of-sample

alpha. The combination of the FSD filter and the standard α̂ sort is especially powerful
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in identifying skilled stock-pickers, with the top quintile of funds in the second-stage

sort by in-sample alpha outperforming the Carhart benchmark by as high as 371 bps

(t = 3.35) per year before management fees (240 bps (t = 2.17) per year after fees).

By investigating the fund return gaps7, I further verify that about half of the Carhart

four-factor alphas of the outperforming funds are resulted from profitable unobserved

within-quarter trades. The finding lends additional support to the empirical success of

the FSD filter in identifying skilled stock-pickers and is consistent with the view that

profitable information is usually short-lived in a stock market that is largely liquid and

efficient.

The investigation into the observable characteristics of the outperforming funds also

produces interesting findings. The identified outperforming funds manifest characteris-

tics that are distinctive from an average fund in the industry in the following aspects:

1. They have similar sizes as an average fund measured as asset under management,

but they are able to charge higher fees.

2. They keep fewer stocks within their portfolios.

3. Controlling for realized in-sample alphas, funds that satisfy the FSD condition

attract more flows.

The finding with the fee setting is partially consistent with the prediction by Berk and

Green (2004) in the sense that more successful funds are able to extract higher rents,

but inconsistent in the specific mechanism. In Berk and Green (2004), skilled managers

demand compensation by growing the size of their funds meanwhile keeping the fees

fixed. My finding, on the other hand, suggests that the outperforming managers are

able to charge higher fees directly rather than growing the size of their funds. The

finding with portfolio concentration is consistent with the theory by Van Nieuwerburgh
7See Kacperczyk, Sialm, and Zheng (2008).
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and Veldkamp (2010). My finding verifies their prediction that informed investors could

voluntarily keep under-diversified portfolios in order to become specialized when infor-

mation acquisition is costly. The finding with the fund flows echoes the empirical work

by Berk and van Binsbergen (2016) and Barber, Huang, and Odean (2016). Based on

their arguments that fund flows reflect investors’ evaluations of managers’ skills, I show

that investors infer the quality of funds from the properties of their return distributions

that are beyond the mean or alpha. Yet, the positive out-of-sample alphas of the iden-

tified funds also suggest that the magnitudes of the fund flows are still insufficient to

fully arbitrage away all the outperformances according to the logic proposed by Berk

and Green (2004).

In short, the contribution of this paper is both empirical and methodological. Em-

pirically, I provide evidence to show the existence of stock-picking skills in the mutual

fund industry and document the characteristics of the outperforming funds. On the

other hand, the methodology developed in this paper is not limited to mutual funds.

The new performance evaluation strategy can be applied to any investor who aspires

to generate profits by actively picking stocks.

The remaining of this article is organized as the following. Section 2 offers a review

of the related literature. Section 3 provides details about the bootstrap exercise to con-

struct the counterfactual return distribution in each single period. Section 4 describes

the construction of the FSD filter using the counterfactual return distribution. Section

5 includes theoretical proofs and simulation exercises to illustrate the advantageous

econometric properties of the FSD condition over the positive alpha condition. Section

6 describes the data and documents the empirical findings. Section 7 concludes.
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2 Related Literature

Systematic academic research on the active mutual fund industry dates back to, at

least, Treynor and Mazuy (1966) and Sharpe (1966). Early empirical work such as

Jensen (1968) and Malkiel (1995) establish that active mutual funds, on average, can-

not outperform the market index before fees, and significantly under-perform the passive

index after fees. The findings are largely consistent with the efficient market hypothe-

sis proposed by Malkiel and Fama (1970). Despite the mediocre average performance,

researchers also investigate whether historical fund performances can be used to select

funds that are able to deliver superior returns in the future. Early work by Hendricks,

Patel, and Zeckhauser (1993), Goetzmann and Ibbotson (1994) and Brown and Goetz-

mann (1995) document the “hot-hand” effect that funds with good performances in the

past also tend to outperform their peers going forward. However, the classic paper by

Carhart (1997) demonstrates that much of the “hot-hand” effect can be attributed to

the momentum of stock prices discovered by Jegadeesh and Titman (1993), and fund

performance does not seem to persist once stock price momentum is adjusted for.

Since the seminal paper by Wermers (2000), researchers started to use survivorship-

bias-free holdings data to better characterize fund styles and identify different types of

investment skills. The influential paper by Daniel et al. (1997) divides the universe of

stocks into size, value and momentum buckets, and characterizes funds’ styles by their

portfolio weights in different stock buckets. Moreover, they show that there is persistent

stock-picking skills, but no significant market-timing skills in their sample period. Later

papers then discover that various holdings characteristics can be used to infer the skills

of fund managers and predict their future performances. For example, Cohen, Coval,

and Pástor (2005) find that funds that have overlapping holdings with past successful

funds tend to outperform others going forward; Kacperczyk, Sialm, and Zheng (2008)
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find that funds with profitable unobserved actions are also likely to generate trading

profits in the future; Cremers and Petajisto (2009) show that funds with more active

weights outperform the ones that are suspected to be closet indices. Other notable ex-

amples include: Grinblatt and Titman (1989), Grinblatt, Titman, and Wermers (1995),

Chen, Jegadeesh, and Wermers (2000), Kacperczyk, Sialm, and Zheng (2005), Alexan-

der, Cici, and Gibson (2006), Jiang, Yao, and Yu (2007), Kacperczyk and Seru (2007),

Baker et al. (2010), Da, Gao, and Jagannathan (2010), Huang, Sialm, and Zhang (2011),

Kacperczyk, van Nieuwerburgh, and Veldkamp (2014), Agarwal et al. (2015), etc. This

paper contributes to this line of literature by proposing a new test on the manager’s

information advantage regarding the idiosyncratic risks of the securities she keeps in the

portfolio. In the same spirit, Iskoz and Wang (2003) also propose a methodology to test

whether a money manager incorporates private information in portfolio construction

by investigating the connections between fund holdings and return distributions. The

difference between this paper and their work is that they consider the relation between

general types of private information and future stock return distributions; whereas this

paper focuses on a particular type of private information on firm-specific risks and im-

poses a detailed restriction on fund return distributions – the FSD condition. Also, this

paper discusses the empirical implementation of the FSD condition and documents the

findings when such a methodology is applied to the active mutual fund industry.

The relation between luck and skill in the context of the active mutual fund industry

was first empirically investigated by Kosowski et al. (2006). Their paper proposes a

bootstrap exercise in the time-series to verify the existence of fund skills ex post. Fama

and French (2010) employs a similar methodology and verifies the results of Kosowski

et al. (2006) in a more recent sample period. Barras, Scaillet, and Wermers (2010)

classifies funds into three categories: unskilled, zero-alpha and skilled, by implement-

ing a novel statistical procedure to account for false discoveries. This paper is closely
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related to these three papers in that it also aims to account for luck in fund managers’

performances. However, this paper contributes to this line of research in two ways.

First, existing papers can only test fund skills in the time-series with repeated obser-

vations; whereas this paper shows that a statistical test on stock-picking skills can be

conducted with even only one observation by carrying out a bootstrap procedure in the

cross section rather than in the time series. Second, existing papers focus on the ex

post identification of funds whose realized alphas are unlikely to be explained by luck;

whereas this paper aims to identify skilled fund managers with short history so that

profitable trading strategies can be formed. In a contemporaneous paper, Ren (2017)

also proposes the application of stochastic dominance to adjust for luck and identify

skilled mutual fund managers. However, in her paper, the stochastic dominance con-

ditions are applied in the comparison between the performances of two actual funds;

whereas, in this paper, I compare the performances between an actual fund and a cohort

of counterfactual funds. My methodology differs from her in two key aspects. First,

by constructing counterfactual funds, my methodology is able to explicitly control for

fund characteristics or factor loadings. Second, by transforming the FSD condition

from the return space to the ranking space, my methodology normalizes the null dis-

tribution to a standard uniform distribution, thereby avoiding the technical difficulties

in implementing the FSD condition.

My findings on the observable characteristics of the outperforming funds are related

to a number of earlier findings in the literature. The finding that the outperforming

funds have the same size as the industry average but are able to charge higher fees is

partially consistent with Berk and Green (2004) that skilled managers are able to extract

higher rents from fund investors, although the specific mechanism is different. The

finding that a large portion of the alphas of the identified outperforming funds are due to

their unobserved within-quarter trades is consistent with Kacperczyk, Sialm, and Zheng
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(2008), where they show that return gap is indicative of the skills of a fund manager.

The finding that the outperforming funds tend to keep more concentrated portfolios

verifies the theoretical prediction by Van Nieuwerburgh and Veldkamp (2010) that

informed investors can voluntarily choose to become under-diversified when information

acquisition is endogenous. The finding that among the funds selected by the FSD filter,

the ones with larger alphas also have more trading is related to Pástor, Stambaugh, and

Taylor (2017), where they show that skilled managers are able to make more profits

when they trade more. Finally, the finding that controlling for realized alpha, funds that

satisfy the FSD condition attract more flows than others echoes the work by Barber,

Huang, and Odean (2016) and Berk and van Binsbergen (2016), where they argue that

fund flows reflect investors’ evaluations on fund managers’ skills.
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3 Benchmark Extension

Under current performance evaluation methodologies, the return of a fund ri,t is com-

pared to a benchmark return rbi,t in every period. The single-period fund outperformance

is then computed as the difference between these two returns, ri,t − rbi,t. This approach

provides a point estimate of the fund’s outperformance in this single period, yet offers

no information about its statistical significance. The extension from the benchmark

return rbi,t to the counterfactual return distribution 〈r̂i,t〉 allows the econometrician to

obtain both the point estimate and the statistical significance of the single-period fund

outperformance due to stock-picking by comparing ri,t to 〈r̂i,t〉. The additional distri-

butional information can then be used to implement the FSD condition as elaborated

in Section 4.

The construction of the counterfactual return distribution is a bootstrap exercise

that mimics the fund’s portfolio by investing in stocks of similar characteristics with the

same portfolio weights meanwhile randomizes the specific stock choices. Specifically,

the procedure can be summarized with the following 4 steps:

1. Retrieve the most recent portfolio of the fund that is available.

2. Create a replica portfolio by replacing each stock in the original portfolio with a

new stock8 of similar characteristics that is randomly chosen, meanwhile keeping

the portfolio weights unchanged.

3. Compute the hypothetical return of the replica portfolio by taking the inner prod-

uct between the portfolio weights and the returns of the replaced stocks.

4. Repeat Step 2 and Step 3 to generate a distribution of counterfactual portfolio

returns.
8The new stock can be the same as the original stock.
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In order to find stocks of similar characteristics with a given stock as required in Step 2,

I follow and extend the approach proposed by Daniel et al. (1997) and Wermers (2003).

For US stocks that are traded on AMEX, NYSE and Nasdaq, I first sort them into 5

size buckets by their market capitalization.9 Within each size bucket, I further divide

the stocks into 5 value buckets by their book-to-market ratio. Then I repeat the same

procedure and divide the stocks within each value bucket into 5 momentum buckets

by their preceding one-year return. Lastly, I divide the stocks in each momentum

bucket further into 5 volatility buckets by their return volatility. The procedure thus

categorizes all stocks into 5× 5× 5× 5 = 625 non-overlapping buckets and is repeated

once in a year by the end of June. For each stock within the original portfolio, Step

2 is carried out by finding a random replacing stock within the same bucket as the

original stock. The weights of the replica portfolio are kept unchanged as the original

portfolio. Table 2 offers an example to illustrate the bootstrap procedure. Panel (a) is

a snapshot of the portfolio of Longleaf Partners Fund by the end of 2012/12. Panel (b)

is a simulated replica portfolio.

In Step 3, the hypothetical return of fund i’s replica in period t is computed as:

r̂i,t =
∑
j

wi,j,t−1 · r̃ĵ,t

where wi,j,t−1 denotes the portfolio weight of stock j within the portfolio of fund i by

the end of period t − 1; ĵ denotes the random replacement of stock j in the replica

portfolio; r̃ĵ,t denotes the return of the replacing stock in period t.

A few comments are in order regarding the bootstrap procedure. First, by control-

ling for stock characteristics in the replica portfolios, I ignore the fact that the choice

of stock characteristics might also reflect the fund manager’s skills. In other words,
9The breakpoints of the size buckets are defined by NYSE stocks only.
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by comparing the real fund with replica funds of similar factor loadings and degree

of diversification, the bootstrap exercise only measures the stock-picking skills of the

manager and is silent about potential factor-timing skills10. Therefore, my methodol-

ogy only focuses on the search of fund managers with a particular set of skills and is

not a general diagnosis on all potential skills that a manager might have. Secondly, I

extend the Daniel et al. (1997) stock classification to include volatility as an additional

dimension. The matching of volatility serves two purposes. On the one hand, recent lit-

erature has documented that stock-level volatility might represent systematic risks that

are priced in the cross section of stocks.11 On the other hand, I match the stock-level

idiosyncratic volatility in the replica funds to the real fund so that the portfolio-level

idiosyncratic volatility of the replica funds would also be comparable to that of the real

fund. The purpose of the matching of idiosyncratic volatility will be further discussed

in Section 4. Thirdly, the holdings information of the real fund is only employed to

extract the weight distribution and stock characteristics of the fund’s investment. The

specific choices of stocks in the real portfolio are not used. Therefore, even though the

holdings information is only empirically available at quarterly frequency, the counter-

factual return distribution can be constructed at higher frequencies, such as monthly or

daily frequencies, by interpolating portfolio characteristics. Finally, the extension from

a single benchmark return to the counterfactual return distribution extracts additional

information about the distribution from the data so that a statistical test on stock-

picking skills can be formed in every period. Outperformance computed under current

evaluation methodologies as the difference between a fund’s return and the benchmark

return can be regarded as a point estimator of the manager’s skills in a single period;

whereas the comparison between the fund’s return and the counterfactual return distri-
10See Grinblatt and Titman (1989) and Daniel et al. (1997) for the definition of the two types of

investing skills
11See, for example, Ang et al. (2009), Fu (2009), etc.
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bution provides both the point estimate and the statistical significance of the manager’s

stock-picking skills in each period.

17



4 FSD Implementation

This section demonstrates how to implement an FSD filter with the time-series of the

counterfactual return distributions {〈r̂i,t〉}Tt=1. A test statistic for the FSD condition is

proposed, and its finite-sample distribution is computed with bootstrap simulation.

4.1 FSD Motivation

I provide heuristic arguments here to demonstrate the type of investment skills that

the FSD condition (ri,t
fsd
� r̂i,t) is able to identify. I defer formal proofs to Appendix A.

Consider a frictionless financial market with a factor structure. There are J factors

(denoted as {Fj,t}Jj=1) that are observable to both fund managers and the econometri-

cian; and L factors (denoted as {fl,t}Ll=1) that are only observable to fund managers

but not to the econometrician. There are K stocks traded in the market. The excess

return (relative to the risk-free rate) of any stock within this market can be decom-

posed into three parts: the exposure to the J observable factors, the exposure to the L

unobservable factors, and the idiosyncratic component:

r̃k,t = rf +
∑
j

βk,jFj,t +
∑
l

γk,lfl,t + εk,t

where r̃k,t denotes the return of stock k at time t; Fj,t (fl,t) is the realization of the

observable (unobservable) factor j (l) at time t; βk,j (γk,l) denotes of the loading of

stock k on factor j (l); εk,t is the idiosyncratic shock in stock k’s return. I assume that

the random variables on the right-hand side of this equation are independent to each

other.
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The return of fund i at time t is:

ri,t =
∑
k

wi,k,t−1r̃k,t

=
∑
k

wi,k,t−1

(
rf +

∑
j

βk,jFj,t +
∑
l

γk.lfl,t + εk,t

)

= rf +
∑
j

(∑
k

wi,k,t−1βk,j

)
Fj,t +

∑
l

(∑
k

wi,k,t−1γk,l

)
fl,t +

∑
k

wi,k,t−1εk,t

≡ rf +
∑
j

βi,j,tFj,t +
∑
l

γi,l,tfl,t +
∑
k

wi,k,t−1εk,t

For each real fund in each period, replica portfolios are constructed according to

the procedure in Section 3. During the construction, each stock within the real fund’s

portfolio is replaced randomly with another stock in the same bucket. The buckets are

defined by the econometrician according to the J observable factors. Therefore, the

return of a replica portfolio of fund i is:

r̂i,t =
∑
k

wi,k,t−1r̃k̂,t

=
∑
k

wi,k,t−1

(
rf +

∑
j

βk̂,jFj,t +
∑
l

γk̂,lfl,t + εk̂,t

)

= rf +
∑
j

(∑
k

wi,k,t−1βk̂,j

)
Fj,t +

∑
l

(∑
k

wi,k,t−1γk̂,l

)
fl,t +

∑
k

wi,k,t−1εk̂,t

≡ rf +
∑
j

β̂i,j,tFj,t +
∑
l

γ̂i,l,tfl,t +
∑
k

wi,k,t−1εk̂,t

I assume that the buckets are fine enough so that any two stocks in the same bucket

have the same loadings on the observable factors, i.e. ∀k, j, βk,j = βk̂,j. Since the replica

fund adopts the same weights as the original fund, it is easy to see that βi,j,t = β̂i,j,t.

Appendix A provides formal arguments to show that the return of fund i first-order
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stochastically dominates its replica (ri,t
fsd
� r̂i,t) if the following three conditions are

satisfied:

1. The manager of fund i has superior information about firm-specific risks so that

E

(∑
k

wi,k,t−1εk,t

)
> E

(∑
k

wi,k,t−1εk̂,t

)
= 0.

2. Fund i is sufficiently diversified so that the idiosyncratic component in fund return∑
k wi,k,t−1εk,t asymptotically follows a normal distribution.

3. Fund i is not biased towards unobservable factors so that ∀l, γi,l,t = γ̂i,l,t.

Intuitively, the FSD condition (ri,t
fsd
� r̂i,t) identifies fund managers whose factor ex-

posures are well-captured by the loadings on observable factors, and who are able to

generate profits by making bets on firm-specific risks in a well-diversified portfolio.

4.2 Ranking FSD

To empirically implement the FSD condition, the key step is to transform the return

FSD condition to a ranking FSD condition.

Proposition 1. A real fund’s return being first-order stochastically dominant to a

replica fund’s return is equivalent to the condition that the ranking of the real fund’s

return among the cohort of replica funds being first-order stochastically dominant to the

ranking of the replica fund’s return among the cohort of replica funds. Moreover, the

ranking of a replica fund’s return among the cohort of replica funds follows a standard

uniform distribution. That is

ri,t
fsd
� r̂i,t ⇐⇒ Pct (ri,t, 〈r̂i,t〉)

fsd
� Pct (r̂i,t, 〈r̂i,t〉) ∼ Unif (0, 1)
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where Pct (ri,t, 〈r̂i,t〉) (Pct (r̂i,t, 〈r̂i,t〉)) denotes the percentile of the real (replica) fund’s

return in the companion return distribution; Unif (0, 1) denotes the uniform distribu-

tion with support [0, 1].

Proof. Since all replica funds are constructed randomly in the bootstrap procedure,

Pct (r̂i,t, 〈r̂i,t〉) ∼ Unif (0, 1) is obvious.

The equivalence condition is immediate from Pct (·, 〈r̂i,t〉) being monotonically in-

creasing.

Denote F Pct(ri,t,〈r̂i,t〉)
t−1 (x)(F Pct(r̂i,t,〈r̂i,t〉)

t−1 (x)) as the conditional CDF of the ranking

ri,t(r̂i,t); 〈r̂i,t〉 [x] as the value at the x percentile of 〈r̂i,t〉.

F
Pct(ri,t,〈r̂i,t〉)
t−1 (x) ≡ Probt−1 (Pct (ri,t, 〈r̂i,t〉) ≤ x)

= Probt−1 (ri,t ≤ 〈r̂i,t〉 [x])

≡ F
ri,t
t−1 (〈r̂i,t〉 [x])

< F
r̂i,t
t−1 (〈r̂i,t〉 [x])

= Probt−1 (r̂i,t ≤ 〈r̂i,t〉 [x])

= Probt−1 (Pct (r̂i,t, 〈r̂i,t〉) ≤ x)

≡ F
Pct(r̂i,t,〈r̂i,t〉)
t−1 (x)

Proposition 2. ri,t
fsd
� r̂i,t ⇐⇒ F

Pct(ri,t,〈r̂i,t〉)
t−1 (x) < F

Pct(r̂i,t,〈r̂i,t〉)
t−1 (x) = x, where Ft−1

denotes the conditional CDF.

Proof. Immediate from Proposition 1.

Figure 2 offers a graphical illustration of the FSD condition. Panel (a) is a demon-

stration regarding the relation between Pct (ri,t, 〈r̂i,t〉) and Pct (r̂i,t, 〈r̂i,t〉). The dashed
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line plots the PDF of Pct (r̂i,t, 〈r̂i,t〉), which is a flat horizontal line constant at 1

since Pct (r̂i,t, 〈r̂i,t〉) follows a standard uniform distribution. The solid line is an ex-

ample of Pct (ri,t, 〈r̂i,t〉). Since Pct (ri,t, 〈r̂i,t〉)
fsd
� Pct (r̂i,t, 〈r̂i,t〉), the solid line has

a smaller left tail compared to the dashed line, but a larger right tail in the PDF

plot. Panel (b) offers the illustration on the same relation with CDF plots. The

Pct (ri,t, 〈r̂i,t〉)
fsd
� Pct (r̂i,t, 〈r̂i,t〉) condition is reflected in the plot as the solid curve

strictly lies below the dashed line.

Proposition 2 establishes the relation between Pct (ri,t, 〈r̂i,t〉) and Pct (r̂i,t, 〈r̂i,t〉)

conditional on the information set by the end of t − 1. Conditional relations between

distributions are not empirically observable. However, Proposition 2 also indicates that

the conditional CDF of Pct (ri,t, 〈r̂i,t〉) always lies below the 45 degree line, which is an

appealing feature to facilitate time aggregation.

Proposition 3. ri,t
fsd
� r̂i,t, ∀t ⇒ F Pct(ri,t,〈r̂i,t〉) (x) < F Pct(r̂i,t,〈r̂i,t〉) (x) = x, where F

denotes the unconditional CDF.

Proof. F Pct(ri,t,〈r̂i,t〉) (x) = E
[
F
Pct(ri,t,〈r̂i,t〉)
t−1 (x)

]
< E

[
F
Pct(r̂i,t,〈r̂i,t〉)
t−1 (x)

]
= E (x) = x.

Note that the unconditional CDF of the ranking of a manager among replica funds

is an empirically observable object. I therefore, employ the empirical counterpart of

F Pct(ri,t,〈r̂i,t〉) (x), i.e. F̂ Pct(ri,t,〈r̂i,t〉) (x), to implement the FSD condition.

4.3 FSD Test Statistic

Figure 3 illustrates the construction of the FSD test statistic. Specifically, for each fund,

I construct its empirical ranking CDF F̂ Pct(ri,t,〈r̂i,t〉) (x) with its historical returns.12

The FSD test statistic θ̂i ∈ [0, 1] is then defined as the measure of the region where
12I use the 24 proceeding monthly returns in the empirical exercise.
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F̂ Pct(ri,t,〈r̂i,t〉) (x) lies below the 45 degree line. The FSD condition is perfectly satisfied

in sample if θ̂i = 1, and a higher θ̂i indicates a better fit of the FSD condition.

Figure 4 demonstrates the simulated finite-sample distribution of the FSD test

statistic θ̂ constructed from 24 observations under the null hypothesis that Pct (ri,t, 〈r̂i,t〉) ∼

Unif (0, 1). The null distribution of θ̂ seems to follow a standard uniform distribution

itself. According to the simulation, a test size of 10% (5%) corresponds to the critical

value of 0.90 (0.95). Asymptotically, F̂ Pct(ri,t,〈r̂i,t〉) (x) − x follows a Brownian bridge

under the null hypothesis that Pct (ri,t, 〈r̂i,t〉) ∼ Unif (0, 1). And it can be verified that

the FSD test statistic θ̂ indeed follows a standard uniform distribution asymptotically.13

In general, the test statistic θ̂ can only be used to evaluate of the goodness of fit

of the FSD condition, but it is unable to measure the magnitude of the fund’s true α.

Therefore, in practice, the FSD filter is better used in combination with the standard

α̂ sort as demonstrated in Section 6. The FSD filter serves to rule out potential false

positives; whereas the α̂ sort measures the magnitude of the potential stock-picking

skills.

13Alternatively, the FSD test statistic can be constructed as θ̂i ≡ maxx∈[0,1]

(
F̂Pct(ri,t,〈r̂i,t〉) (x)− x

)
,

which is a variant of the Kolmogorov–Smirnov (KS) statistic (maxx∈[0,1]

∣∣∣F̂Pct(ri,t,〈r̂i,t〉) (x)− x
∣∣∣). This

alternative test statistic does not have a tractable asymptotic null distribution. Empirically, the
alternative test statistic generates similar findings as the test statistic defined in this section. The
results are discussed in Appendix B.

23



5 Finite Sample Robustness

This section describes two specific mechanisms through which the FSD condition is able

to improve the power of the conventional positive alpha condition. The two mechanisms

correspond to two statistical problems that might be present in the data: heteroscedas-

ticity and benchmark mis-specification. The heteroscedasticity problem is defined as

the situation where idiosyncratic volatility is time-varying and more volatile than the

fund’s true alpha; whereas the benchmark mis-specification problem is defined as some

managers taking on factors that are unobservable to the econometrician. The FSD

condition possesses superior econometric properties compared to the positive alpha

condition because:

1. Heteroscedasticity:

(a) Positive alpha condition: Assigns equal weight to all observations regardless

of the level of idiosyncratic volatility.

(b) FSD condition: Weights observations differently according to the signal-to-

noise ratio in different periods.

2. Benchmark Mis-specification:

(a) Positive alpha condition: Tends to mistakenly select mis-specified managers

who take on unobservable factors with high in-sample realizations as being

skilled.

(b) FSD condition: Offers a detection mechanism to rule out mis-specified man-

agers by checking the left tails of their return distributions.

I provide both theoretical arguments and simulation results to illustrate the superiority

of the FSD condition to the positive alpha condition in these aspects.
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5.1 Simulation Environment

In order to illustrate the arguments, I construct an artificial economy with the following

specifications. I simulate 1000 fund managers, among whom 20 are skilled with α being

25 bps per month. The percentage of skilled managers and the magnitude of their α is

determined according to the findings documented in Fama and French (2010). Except

for the case studying benchmark mis-specification, I assume a one-factor structure, e.g.

the market factor rm,t. Without loss of generality, I assume that all funds have unit

loading on the single factor, and the risk-free rate is zero. I also assume that the single

factor follows normal distribution: rm,t ∼ N (0, 0.062), i.e. the factor has 0 mean and

6% monthly (6% ×
√

12 = 21% annualized) volatility. Therefore, the return of an

unskilled manager is

runskilledi,t = rm,t + ui,t, E (ui,t) = 0, rm,t ∼ N
(
0, 0.062

)
and the return of a skilled manager is

rskilledi,t = 25bps+ rm,t + ui,t, E (ui,t) = 0, rm,t ∼ N
(
0, 0.062

)
.

The performances of the replica funds in the construction of the FSD test statistic have

the same properties as the unskilled managers. That is

r̂i,t = rm,t + ûi,t, ûi,t ∼ ui,t, rm,t ∼ N
(
0, 0.062

)
where ûi,t and ui,t have the same probability distribution but a mutually independent.

I then select 20 best performing managers in the simulated data using α̂ and θ̂, i.e.

the test statistics of the positive alpha condition and the FSD condition, respectively;

and compare the accuracy of these two filters in identifying skilled fund managers.
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5.2 Robustness to Heteroscedasticity

In order to study the influence of return heteroscedasticity on the performance measures,

I assume that the volatility of idiosyncratic returns follows the following (almost) AR1

process:

σi,t = max {σi,t−1 + ρ (σ̄ − σi,t−1) + ζεt, 0} .

where ρ determines the speed of mean-reversion of the volatility process, σ̄ is the long-

run volatility, ζ is the volatility of the volatility process, and εt is a standard normal

shock, i.e. εt ∼ N (0, 1).

For simplicity, I assume that the idiosyncratic return components are also normal:

ui,t ∼ ûi,t ∼ N
(
0, σ2

i,t

)
.

In the simulations, I specify: ρ = 0.9∗, σ̄ = 0.01∗; and I consider three different

degrees of heteroscedasticity: ζL = 0.0012, ζM = 0.0018 and ζH = 0.0024∗.14 The return

processes for the managers in this heteroscedastic economy are thus fully specified.

In this economy, the positive alpha filter should have poor performance when het-

eroscedasticity is high because it assigns equal weight to all observations so that lucky

shocks from high volatility periods are of large magnitudes and are difficult to be can-

celled out by shocks in other periods.

The FSD filter, on the other hand, naturally does not suffer from this problem

because idiosyncratic volatility is adjusted period by period when the ranking of the

real fund return among replica funds (Pct (ri,t, 〈r̂i,t〉)) is taken. Conceptually, this

adjustment mechanism is similar to a weighted least square (WLS) regression. But

the WLS regression requires the specification of the volatility process of the residual,

whereas the FSD filter accounts for heteroscedasticity via bootstrap simulations and
14Values with the “*” sign are calibrated with the real data.
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does not make structural assumptions about the volatility process.

Figure 5 compares the effectiveness of the positive alpha filter versus the FSD filter

in the heteroscedastic economy. The x-axis is the formation period from which the

performance measures are constructed. The y-axis is the average number of skilled

managers that the corresponding filter is able to identify over 500 simulation paths.

The black solid (blue dotted, red dashed) line represents the level of heteroscedasticity

with ζ = 0.0012 (ζ = 0.0018, ζ = 0.0024∗). Panel (a) plots the effectiveness of the

positive alpha filter; whereas Panel (b) plots the effectiveness of the FSD filter.

From the figure, the real-world level of heteroscedasticity is mild enough so that the

positive alpha filter is virtually unaffected. Interestingly, Panel (b) of the figure shows

that the effectiveness of the FSD filter improves with heteroscedasticity. The intuition

of this result is that idiosyncratic volatility gets adjusted in each period. High volatility

periods are assigned with low weights and low volatility periods are assigned with high

weights. Therefore, the FSD filter improves with heteroscedasticity because it is able

to take advantage of the high signal-to-noise ratio in periods with low idiosyncratic

volatility.

5.3 Benchmark Mis-specification Detection

Another difficult problem encountered by the positive alpha condition is that the passive

index that is used to benchmark a fund’s performance might be inappropriately chosen

and does not fully account for the fund’s exposure to systematic factors so that the

outperformance in each period as well as the overall α might be measured with error.

To fix ideas, I modified the aforementioned simulation environment to introduce a

third type of fund managers – the mis-specified managers. The return processes of the

three types of managers are as follows:
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The unskilled managers:

runskilledi,t = rm,t + ui,t, ui,t ∼ N
(
0, 0.012

)
, rm,t ∼ N

(
0, 0.062

)
.

The skilled managers:

rskilledi,t = 25bps+ rm,t + ui,t, ui,t ∼ N
(
0, 0.012

)
, rm,t ∼ N

(
0, 0.062

)
.

The mis-specified managers:

rmis−speci,t = rm,t + fi,t + ui,t, ui,t ∼ N
(
0, 0.012

)
, rm,t ∼ N

(
0, 0.062

)
, fi,t ∼ N

(
0, σ2

f

)
.

The returns of the replica funds have the same properties for all three types of managers.

That is

r̂i,t = rm,t + ûi,t, ûi,t ∼ ui,t, rm,t ∼ N
(
0, 0.062

)
.

Notice that for the mis-specified managers, the replica funds have the same exposure

to the observable factor rm,t, but do not load on the unobservable factor fi,t.

The mis-specified managers have no stock-picking skills so that they generate zero

α. The difference between the mis-specified and the unskilled managers is that a mis-

specified manager takes on factor risk fi,t that is not observable to the econometrician.

Thus, fi,t is not controlled for in the replica funds. The volatility of the uncontrolled

factor σf is a measure of the severity of mis-specification in this economy.

I assume idiosyncratic volatility to be constant in this case so that ui,t ∼ ûi,t ∼

N (0, 0.012). I consider three levels of uncontrolled factor volatility with σf = 0.01 (σf =

0.03, σf = 0.05) representing the case of mild (moderate, severe) mis-specification. In

the most severe case, the volatility of the missing factor is comparable to the volatility
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of the market so that this specification is empirically plausible. For simplicity, the

factor is assumed to follow normal distribution: fi,t ∼ N
(
0, σ2

f

)
, and the uncontrolled

factors for two managers are uncorrelated. There are 1000 managers in total in the

economy. Among them, 20 managers are skilled, 100 managers are mis-specified, and

the remaining 880 managers are unskilled.

The existence of the mis-specified managers might severely compromise the effec-

tiveness of the positive alpha filter. To see that, the α̂ of a mis-specified manager

is

α̂i =
1

T

∑
t

(ri,t − rm,t)

=
1

T

∑
t

fi,t +
1

T

∑
t

ui,t.

Thus the existence of unobservable factors might obscure the measurement of skill

because α̂i can be dominated by the realization of 1
T

∑
t fi,t especially when sample is

short (T is small) or mis-specification is severe (σf is large).

The FSD condition is able to alleviate this problem by offering a detection mecha-

nism. Suppose the fund has significant loading on a factor that is not controlled in the

bootstrap process during the construction of the replica portfolios, then the first-order

stochastic dominance condition is likely to be violated. Indeed, during periods in which

the uncontrolled factor has large positive realizations, the manager would rank highly

compared to the replica funds, and vice versa during periods when the uncontrolled

factor has large negative realizations. As as result, the PDF of the ranking of the

manager compared to the replica funds (Pct (ri,t, 〈r̂i,t〉)) shall have both large left and

right tails, violating the first-order stochastic dominance condition. Figure 6 offers a

graphical illustration of the detection mechanism.

The following proposition provides a more general statement for this argument when
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the uncontrolled factor is allowed to have non-zero risk premium.

Proposition 4. Consider a mis-specified manager’s return process:

ri,t = rf +
∑
j

βi,jFj,t +
∑
l

γi,lfl,t + ei,t

≡ rf +
∑
j

βi,jFj,t + f̃i,t + ei,t

f̃i,t ∼ N
(
µf , σ

2
f

)
, ei,t ∼ N

(
0, σ2

i

)
, f̃i,t ⊥ ei,t.

where {Fj,t}Jj=1 are the observable factors, {fl,t}Ll=1 are the unobservable factors, ei,t is

the idiosyncratic component.

A corresponding replica fund has the return process:

r̂i,t = rf +
∑
j

βi,jFj,t + êi,t

êi,t ∼ N
(
0, σ2

i

)
.

The first-order stochastic dominance condition ri,t
fsd
� r̂i,t is violated as long as

σf > 0.

Proof. ri,t
fsd
� r̂i,t ⇐⇒ f̃i,t + ei,t

fsd
� êi,t.

Since f̃i,t ⊥ ei,t, f̃i,t + ei,t ∼ N
(
µf , σ

2
f + σ2

i

)
.

Denote the PDF of f̃i,t + ei,t as φ (x) ≡ 1√
2π(σ2

f+σ
2
i )

exp

[
− (x−µf)

2

2(σ2
f+σ

2
i )

]
; and the PDF

of êi,t as φ̂ (x) = 1√
2πσ2

i

exp
[
− x2

2σ2
i

]
.
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Define

L (x) ≡ φ (x)

φ̂ (x)

=

√
σ2
i(

σ2
f + σ2

i

) exp

[
x2

2σ2
i

− (x− µf )2

2
(
σ2
f + σ2

i

)]

=

√
σ2
i(

σ2
f + σ2

i

) exp

[(
σ2
f + σ2

i

)
x2 − σ2

i (x− µf )2

2σ2
i

(
σ2
f + σ2

i

) ]

=

√
σ2
i(

σ2
f + σ2

i

) exp

[
σ2
fx

2 + 2σ2
i µfx− σ2

i µ
2
f

2σ2
i

(
σ2
f + σ2

i

) ]
.

If σf > 0, then limx→−∞ L (x) = +∞. Therefore, f̃i,t + ei,t has a larger left tail

compared to êi,t, and the first-order stochastic dominance condition is violated.

Of course, the proposition only holds under the special condition that both the

uncontrolled factors and the idiosyncratic risk are normal, and are independent to each

other. The conclusion of the proposition can be violated if one considers alternative

distribution specifications of the uncontrolled factors. However, the proposition conveys

the intuition that the FSD condition is able to detect the existence of the uncontrolled

factors because the mis-specified managers are likely to have a larger left tail in their

return distributions compared to the replica funds when they take on factors that are

not controlled by the econometrician, as demonstrated in Figure 7.

Figure 8 and Figure 9 compare the effectiveness of the positive alpha filter versus

the FSD filter in simulation. Figure 8 demonstrates the two filters’ ability to identify

skilled managers; whereas Figure 9 illustrates their tendencies to select mis-specified

managers. Specifically, the x-axis is the formation period from which the performance

measures are constructed. For Figure 8, the y-axis is the average number of skilled

managers that the corresponding filter is able to identify over 500 simulation paths;

whereas for Figure 9, the y-axis is the average number of mis-specified managers that the
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corresponding filter erroneously selects over 500 simulation paths. The black solid (blue

dotted, red dashed) line represents the situation where benchmark mis-specification is

mild σf = 0.01 (moderate σf = 0.03, severe σf = 0.05).

From the figures, the positive alpha filter identifies fewer skilled managers when

benchmark mis-specification becomes more severe because it tends to erroneously select

mis-specified managers whose uncontrolled factors have high in-sample realizations.

The FSD filter, however, is unaffected by benchmark mis-specification because the

FSD condition excludes the mis-specified managers as their rankings relative to replica

funds would have both larger left and right tails compared to a uniform distribution.
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6 Empirical Findings

6.1 Data

I obtain monthly after-fees fund returns along with other fund characteristics such as

fund size, age, name, expense ratio, etc. from CRSP Survivor-Bias-Free US Mutual

Fund Database. I compute the before-fees returns by adding back the expense ratio

to the after-fees fund returns. I obtain fund holdings from Thomson Reuters Mutual

Fund Holdings (s12), formerly known as the CDA/Spectrum Mutual Fund Holdings

Database. Both databases are standard in this line of research. Their popularity arose

largely due to their efforts to eliminate survivorship bias by making an attempt to

include all funds that have ever existed in the US market. In fact, Linnainmaa (2013)

raised the concern of a potential reverse survivorship bias by using these databases

as funds hit by a series of unlucky negative shocks tend to exit the market, leaving

behind trajectories of poor performances without the chances to “clear their names”.

Therefore, my finding of superior out-of-sample performances is unlikely to be caused

potential survivorship bias. I follow the standard approach to link these two databases

with the MFLINKS database constructed by Prof. Russ Wermers, and I obtain stock

prices and returns from the CRSP Monthly Stock File.

I limit my focus to domestic, open-end, actively managed, US equity funds. I employ

the investment objectives code (crsp_obj_cd) that has been recently introduced by

CRSP as my screening variable to identify such funds.15 Doshi, Elkamhi, and Simutin

(2015) shows that the funds identified with the crsp_obj_cd are almost identical to

the funds identified with the investment objectives codes from other data vendors that
15I include funds with crsp_obj_cd that begins with “EDC” or “EDY”; exclude funds with

crsp_obj_cd being “EDYH” or “EDYS”; and exclude option income funds with Strategic Insight Ob-
jectives code being “OPI”. I then eliminate index funds by screening fund names.
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have been used in earlier literature.16 To reduce the impact from very small funds, I

require the funds in my sample to have at least $10 million under management and hold

at least 10 stocks in their portfolios. I aggregate funds with multiple share classes into

a single class as these different share classes have the same portfolio composition. In

order to have enough funds for this project, I take the sample period from January 1991

to December 2015. I have 2693 distinctive funds in my sample and 227,710 fund-month

observations. Table 3 documents the summary statistics of the funds that are included

in my sample.

6.2 Out-of-sample Performances

Table 4 documents the out-of-sample performances of the funds identified by the FSD

condition. Specifically, by the end of each quarter, I compute the empirical CDF of the

percentile of each fund in the counterfactual return distribution (F̂ Pct(ri,t,〈r̂i,t〉) (x)). I

then construct the FSD test statistic θ̂ for each fund. I install the FSD filter to select

funds with θ̂ ≥ 0.90, which corresponds to a 10% test size. The FSD filter alone is

able to identify a group of fund managers who are able to outperform the Carhart

benchmark by 203 bps per year before fees (78 bps per year after fees) out of sample.

If the FSD filter is indeed able to identify skilled fund managers, then one should

expect performance persistence among the FSD selected funds. To verify this conjec-

ture, I further sort the FSD identified funds into 5 quintiles by their realized Carhart

four-factor alphas during the proceeding 24 months. Table 4 shows that for those FSD

satisfying funds, historical alphas do predict future performances. Specifically, the av-

erage out-of-sample alphas of the funds increase monotonically with historical realized

alphas. The funds in the top quintile are able to, on average, outperform the Carhart

four-factor benchmark by as much as 371 bps per year before fees (240 bps per year
16I thank the authors for sharing their SAS code online.
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after fees). The finding of alpha persistence among the identified funds is consistent

with the arguments that the FSD condition is able to identify a group of fund managers

who are potentially skilled at stock-picking.

Figure 10 plots the time-series of the before-fees performances of the selected mutual

funds. Panel (a) plots the time-series of the fund performances for all funds selected by

the FSD filter; whereas Panel (b) plots the top quintile of the funds with the highest

historical alpha within the funds selected by the FSD filter. The blue dashed (red

solid) line is the cumulative before-fees return of the selected mutual funds (the market).

Figure 11 plots the time-series of the before-fees outperformances of the selected mutual

funds. The outperformance is defined as the cumulative return of a trading strategy

that longs the portfolio of identified funds and shorts the market. From the figure, fund

outperformances seem to be most pronounced during the dot-com bubble periods, but

the outperformances are in general consistent over the sample period.

Figure 12 plots the histograms of the before-fees excess returns of the selected mutual

funds. Panel (a) plots the histogram of the returns in excess of the Carhart four-

factor benchmark for all funds selected by the FSD filter; whereas Panel (b) plots the

histogram of the returns in excess of the Carhart four-factor benchmark for the top

quintile of the funds with the highest historical alpha within the funds selected by the

FSD filter. From the figure, it is obvious that the identified funds are more likely to

realize positive excess returns than negative excess returns compared to the Carhart

four-factor benchmark. And also, the excess return distributions feature heavier right

tails than left tails, which is consistent with the requirement of the FSD condition.

6.3 Comparison to Alternative Performance Measures

How does the FSD filter compare to other performance measures? Table 5 and Table

6 compare the out-of-sample performance of the FSD filter to two conventional perfor-
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mance measures: alpha and information ratio (IR). To make the results comparable, I

repeat the search exercise in the previous subsection but replace the FSD test statistic

with the alternative performance measures. Specifically, I use the alternative perfor-

mance measures (alpha or IR) to select the top 10% of the funds in the first stage.

Then among these funds, I further sort them into 5 quintiles based on their in-sample

Carhart four-factor alphas.

Consistent with Carhart (1997), Table 5 shows that the in-sample alpha measure is

unable to select funds that are able to significantly outperform the Carhart four-factor

benchmark out of sample. The first-stage funds are only able to outperform the Carhart

four-factor benchmark by 113 bps before fee, which is not statistically significant. After

fees, these funds underperform the Carhart four-factor benchmark by 16 bps. Moreover,

there is also lack of performance persistence among the first-stage funds. The out-of-

sample alphas of the fund portfolios in the second stage are not monotonic with respect

to in-sample alphas.

Table 6 shows that the search based on information ratio works better than alpha.

The funds in the first stage are able to generate an out-of-sample four-factor alpha of

169 bps with a t-statistic of 2.81. After fee, the out-of-sample alpha drops to 49 bps

and is no long statistically significant. In the second stage, the high quintile funds also

perform better than the search based on alpha. However, the out-of-sample alphas are

still non-monotonic with respect to in-sample alphas.

In sum, Table 5 and Table 6 show that the FSD filter offers better out-of-sample

performance than the search based on in-sample alpha or information ratio.

6.4 Fund Characteristics

Table 7 compares the observable characteristics of the identified funds with the cross-

sectional average of all funds in the sample. From the table, the funds identified by the
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FSD filter do not differ in size compared to an average fund in the industry. However,

the funds in higher second-stage quintiles charge more fees. The finding is partially

consistent with Berk and Green (2004) in the sense that more skilled managers are able

to extract higher rents in equilibrium, although the specific mechanism is different. In

Berk and Green (2004), skilled managers receive compensation by growing the size of

their funds, leaving the fees unchanged. My finding, on the other hand, suggests that

they demand higher fees directly. Funds in higher second-stage quintiles also tend to

keep fewer stocks in their portfolios, thereby being more concentrated. This finding is

consistent with the theory proposed by Van Nieuwerburgh and Veldkamp (2010) that

informed investors can choose to be specialized when information acquisition is costly.

The finding that funds in higher quintiles also trade more is related to the finding by

Pástor, Stambaugh, and Taylor (2017) that trades by active mutual fund managers

tend to be profitable.

6.5 The Return Gap

One potential concern regarding the outperformances of the identified funds is that

instead of possessing stock-picking skills, those funds might be loading on momentum

factors that the Carhart benchmark does not perfectly control for. In order to rule

out such possibility, I study the return gaps of the identified funds. The return gap is

defined as the difference between a fund’s actual return from the hypothetical return

that the fund might have earned by keeping the portfolio weights at the beginning of

the quarter unchanged throughout the entire quarter:

rgapi,t ≡ ri,t −
∑
j

wi,j,tr̃j,t
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where wi,j,t denotes the portfolio weight of stock j of fund i at the most recent quarter-

end of month t; r̃j,t denotes the return of stock j during month t.

The return gap measures the profitability of the unobserved within-quarter actions

conducted by a fund manager. I regress the return gaps of the identified funds against

the Carhart four-factor benchmark:

rgapi,t = αrgapi +βrgapm,i (rm,t − rf )+βrgapsmb,ismbt+β
rgap
smb,ismbt+β

rgap
hml,ihmlt+β

rgap
umd,iumdt+ε

rgap
i,t .

The results are documented in Table 8. The table shows that the out-of-sample alphas

resulting from the return gaps also increase monotonically with historical alphas for

funds selected by the FSD filter. Moreover, the return gaps account for about half of

the total out-of-sample alphas for all quintiles. The finding is consistent with the results

of Kacperczyk, Sialm, and Zheng (2008) that the return gap is indicative of manager

skills. The profitability of the return gap offers strong support that the identified

managers are skilled because they are able to make profitable within-quarter trades. It

rules out the concern that the outperformances of the identified managers are entirely

driven by their loadings on some uncontrolled momentum factors.

6.6 The Mimicking Strategy

The return gap analysis suggests that the identified fund managers are able to generate

profits from their unobserved within-quarter actions. Therefore, it should also suggest

that it would be difficult for an out-sider to free-ride on those managers stock-picking

endeavors. Indeed, Table 9 documents the performance of the trading strategy that

aims to mimic the performances of the selected outperforming mutual fund managers.

To ensure implementability, by the end of each quarter, the stock holdings from the

end of the previous quarter are retrieved for the managers who have been identified by
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the FSD filter. The trading strategy then invests in the stocks that the managers were

holding as of the end of the previous quarter. The portfolios are rebalanced every three

months. The post-ranking annualized alphas and factor loadings are documented along

with their heteroscedasticity-robust t-statistics.

Consistent with the analysis on the return gap, the mimicking strategy loses about

half of the profitability compare to the managers’ total before-fees performances. In-

terestingly, the profitability of the mimicking strategy is comparable to that of the

after-fees returns that investors are able to earn by investing in the funds. The finding

suggests that the fees of the identified funds might be set rationally in equilibrium. This

result is consistent with the findings documented by Frank et al. (2004) for a limited

sample of high-expense funds.

6.7 Fund Flow Responses

According to Berk and van Binsbergen (2015) and Barber, Huang, and Odean (2016),

fund flows contain information about fund investors’ evaluations of managers’ invest-

ment skills. In order to understand whether fund investors infer managers’ skills using

signals correlated with the FSD condition, I run the following Fama-Macbeth regression:

Flowi,t = Const+ δ0 × FSDi,t−1 + (β + δ1 × FSDi,t−1)× α̂[t−1−T,t−1]
i +Xi + εi,t,

where Xi represents control variables including fund age, log fund size, fees, and the

number of stocks in the portfolio; α̂[t−1−T,t−1]
i is the trailing in-sample realized Carhart

four-factor alpha; FSDi,t−1 is a dummy variable that equals to one for funds with a

FSD test statistic θ̂ higher than 0.90, and zero otherwise.

The parameters of interest are δ0 and δ1. A positive δ0 indicates that controlling
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for realized in-sample alphas, the funds that satisfy the FSD condition attract more

flows than other funds. A positive δ1 indicates that flows are more sensitive to realized

in-sample alphas for funds that satisfy the FSD condition.

Table 10 presents the regression results. Both δ0 and δ1 are highly significantly

positive. The finding suggests that fund investors reveal preferences towards fund return

distribution properties beyond the first moment (mean/alpha). They appreciate funds

with return distributions satisfying the FSD condition more than other funds controlling

for realized alpha. On the other hand, the still positive out-of-sample alphas of the

FSD identified funds suggest the presence of certain informational frictions in the fund

market so that the fund outperformances are not fully arbitraged away as in the Berk

and Green (2004) equilibrium.
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7 Conclusion

Due to the strong influence of luck in fund managers’ performances, the search for skilled

managers with predictable outperformances is a challenging task. Existing alpha based

evaluation methods have poor out-of-sample performances because alpha is related to

the mean of the return distribution and mean is difficult to estimate in short samples.

I show that, by limiting the search scope to a specific subset of skilled managers – the

skilled stock-pickers, a new first-order stochastic dominance condition can be imposed

to improve the effectiveness of the search. The new FSD filter complements the conven-

tional α̂ sort because it is robust to finite-sample problems such as heteroscedasticity

and benchmark mis-specification. The empirical part of this paper demonstrates the

superior performance of the combination of the new FSD filter and the standard α̂ sort

in identifying outperforming stock-pickers. My findings confirm various theoretical and

empirical results discussed earlier in the literature and are also able to shed new light

on our understanding about the active mutual fund industry.
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Appendix

A. The Factor Model

I propose a factor model in this section to formalize the definition of stock-picking

skills. The model serves to clarify the specific assumptions required to establish the

FSD condition. The analysis shows that one set of sufficient conditions to impose the

FSD condition is to limit the search scope to fund managers who are: 1) skilled at

stock-picking; 2) unbiased towards unobservable factors; 3) sufficiently diversified.

A.1 The Economy

The economy considered in this section is a frictionless financial market with a factor

structure. There are J factors (denoted as {Fj,t}Jj=1) that are observable to both fund

managers and the econometrician; and L factors (denoted as {fl,t}Ll=1) that are only

observable to fund managers but not to the econometrician. There are K stocks traded

in the market. The excess return (relative to the risk-free rate) of any stock within this

market can be decomposed into three parts: the exposure to the J observable factors,

the exposure to the L unobservable factors, and the idiosyncratic component:

r̃k,t = rf +
∑
j

βk,jFj,t +
∑
l

γk,lfl,t + εk,t

where r̃k,t denotes the return of stock k at time t; Fj,t (fl,t) is the realization of the

observable (unobservable) factor j (l) at time t; βk,j (γk,l) denotes of the loading of

stock k on factor j (l); εk,t is the idiosyncratic shock in stock k’s return.

The factors and the idiosyncratic shocks represent different sources of risks and

are assumed to be mutually independent. For an economic interpretation, the factors
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{Fj,t}Jj=1 and {fl,t}Ll=1 can be regarded as J + L different types of market-wide risks;

whereas the idiosyncratic shocks {εk,t}Kk=1 represent firm-specific risks.

Assumption 1. The factors {Fj,t}Jj=1 and {fl,t}
L
l=1, and the idiosyncratic shocks {εk,t}Kk=1

are mutually independent. That is ∀j, j′ Fj,t ⊥ Fj′,t, ∀l, l′ fl,t ⊥ fl′,t, ∀k, k′ εk,t ⊥

εk′,t, ∀j, l Fj,t ⊥ fl,t, ∀j, k Fj,t ⊥ εk,t, ∀l, k fl,t ⊥ εk,t, where ⊥ denotes that two

random variables are independent to each other.

Regarding the idiosyncratic shocks, they have zero expectation under the econo-

metrician’s information set so that there is no asymptotic arbitrage in this economy

according to Ross (1976).

Assumption 2. Idiosyncratic shocks have zero expectation under the econometrician’s

information set: ∀k, E (εk,t) = 0.

A.2 Connection between Real and Replica Fund Returns

For each real fund in each period, replica portfolios are constructed according to the

procedure in Section 3. During the construction, each stock within the real fund’s

portfolio is replaced randomly with another stock in the same bucket. In this economy,

the buckets are defined by the econometrician according to the J observable factors.

Assumption 3. For each stock within the original portfolio, its replacement in the

replica portfolio has the same exposure to observable factors, i.e.

∀k, j βk,j = βk̂,j

where βk,j is stock k’s exposure to observable factor j; k̂ labels the replacing stock of

stock k; βk̂,j is the exposure to observable factor j of stock k’s replacing stock.
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For expositional clarity, I adopt the following notation. I denote the return of fund

i in period t as

ri,t =
∑
k

wi,k,t−1r̃k,t

=
∑
k

wi,k,t−1

(
rf +

∑
j

βk,jFj,t +
∑
l

γk.lfl,t + εk,t

)

= rf +
∑
k

wi,k,t−1

(∑
j

βk,jFj,t

)
+
∑
k

wi,k,t−1

(∑
l

γk.lfl,t

)
+
∑
k

wi,k,t−1εk,t

= rf +
∑
j

(∑
k

wi,k,t−1βk,j

)
Fj,t +

∑
l

(∑
k

wi,k,t−1γk,l

)
fl,t +

∑
k

wi,k,t−1εk,t

≡ rf +
∑
j

βi,j,tFj,t +
∑
l

γi,l,tfl,t︸ ︷︷ ︸
vi,t

+
∑
k

wi,k,t−1εk,t︸ ︷︷ ︸
ei,t︸ ︷︷ ︸

ui,t

≡ rf +
∑
j

βi,j,tFj,t + ui,t.
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Likewise, the return of fund i’s replica is written as

r̂i,t =
∑
k

wi,k,t−1r̃k̂,t

=
∑
k

wi,k,t−1

(
rf +

∑
j

βk̂,jFj,t +
∑
l

γk̂,lfl,t + εk̂,t

)

= rf +
∑
k

wi,k,t−1

(∑
j

βk̂,jFj,t

)
+
∑
k

wi,k,t−1

(∑
l

γk̂,lfl,t

)
+
∑
k

wi,k,t−1εk̂,t

= rf +
∑
j

(∑
k

wi,k,t−1βk̂,j

)
Fj,t +

∑
l

(∑
k

wi,k,t−1γk̂,l

)
fl,t +

∑
k

wi,k,t−1εk̂,t

≡ rf +
∑
j

β̂i,j,tFj,t +
∑
l

γ̂i,l,tfl,t︸ ︷︷ ︸
v̂i,t

+
∑
k

wi,k,t−1εk̂,t︸ ︷︷ ︸
êi,t︸ ︷︷ ︸

ûi,t

≡ rf +
∑
j

β̂i,j,tFj,t + ûi,t

The excess return of a real (replica) fund can be decomposed into three parts:

the exposure to the observable factors
∑

j βi,j,tFj,t (
∑

j β̂i,j,tFj,t), the exposure to the

unobservable factors vi,t ≡
∑

l γi,l,tfl,t (v̂i,t ≡
∑

l γ̂i,l,tfl,t), and the exposure to the

idiosyncratic shocks ei,t ≡
∑

k wi,k,t−1εk,t (êi,t ≡
∑

k wi,k,t−1εk̂,t).

Note that fund i and its replica have the same portfolio weights by construction. A

direct outcome of this and Assumption 3 is that the real fund and the replica have the

same exposure to observable factors.

Proposition 5. For observable factors, the original portfolio and the replica portfolio

have the same loadings, i.e. ∀i, j, t, βi,j,t = β̂i,j,t.

Proof. According to Assumption 3, ∀k, j βk,j = βk̂,j. Therefore, βi,j,t =
∑

K wi,k,t−1βk,j =∑
K wi,k,t−1βk̂,j = β̂i,j,t, i.e. the original portfolio and the replica portfolio have the same

loadings on observable factors.
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By construction, the econometrician ensures that the replica fund has the same

loadings on observable factors as the original fund. As for the unobservable factors, the

replica fund’s loadings should be unbiased since the stocks within the replica fund are

picked randomly once the observable factor loadings are match.

Proposition 6. For well-diversified portfolio weight distribution {wi,k,t−1}, the replica

fund’s loadings on the unobservable factors are unbiased. That is, ∀i, l, γ̂i,l,t =∑
K wi,k,t−1γk̂,l ≈

∑
K wi,k,t−1γ̄k,l, where γ̄k,l ≡ E (γk.l| {βk,j}) is the average loading

on factor fl,t for stocks in the bucket identified by {βk,j}.

Proof. Denote

δk̂,l ≡ γk̂.l − E
(
γk̂.l|

{
βk̂,j

})
= γk̂.l − E (γk.l| {βk,j})

= γk̂.l − γ̄k,l

δk̂,l is the deviation of stock k̂’s loading on factor l from the average loading on factor

l of the stocks in the same bucket as k̂. Since stock k̂ is chosen randomly within the

bucket, E
(
δk̂,l| {βk,j}

)
17.

The second line comes from the fact that βk̂,j = βk,j.

γ̂i,l,t =
∑
k

wi,k,t−1γk̂,l

=
∑
k

wi,k,t−1

(
γ̄k,l + δk̂,l

)
=
∑
k

wi,k,t−1γ̄k,l +
∑
k

wi,k,t−1δk̂,l

LLN
≈
∑
k

wi,k,t−1γ̄k,l

17Here, the expectation is taken before the fund is constructed.
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The last line is given by Law of Large Number. It holds when the portfolio is

sufficiently diversified.

Proposition 6 shows that the replica fund’s loadings on the unobservable factors are

unbiased because the stocks within the replica fund’s portfolio are chosen randomly.

On the other hand, if the loadings on the observable factors can already sufficiently

characterize the style of the original fund, then the original fund’s loadings on the

unobservable factors should also be unbiased.

Definition 1. Fund i’s style is well-specified by the observable factors iff

∑
k

wi,k,t−1 (γk.l − E (γk.l| {βk,j}))

≡
∑
k

wi,k,t−1δk.l

≈0

Equivalently,

γi,l,t ≈
∑
k

wi,k,t−1γ̄k,l

As mentioned in Section 3, the matching of style between the original fund and

the replica funds indicates that only stock-picking skills rather than factor-timing skills

can be measured in this exercise. A fund manager manifests stock-picking skills in his

ability to predict idiosyncratic stock returns {εk,t}Kk=1. The stock-picking skills of a fund

manager can be defined more formally as follows.

Definition 2. Define skilled stock-pickers as the managers with superior information

about {εk,t}Kk=1 and satisfy:
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1. Better firm-specific information, not contingent on factor realizations:

E (ei,t| {wi,k,t−1}) = E

(∑
k

wi,k,t−1εk,t| {wi,k,t−1}

)
≡ αi,t

>E (êi,t| {wi,k,t−1}) = E

(∑
k

wi,k,t−1εk̂,t| {wi,k,t−1}

)
= 0

and

εk,t ⊥ Fj,t| {wi,k,t−1} , ∀k, j

εk,t ⊥ fl,t| {wi,k,t−1} , ∀k, l

εk,t ⊥ εk′,t| {wi,k,t−1} , ∀k, k′

2. Sufficiently diversified, so that Proposition 6 holds and Central Limit Theorem

applies:

∑
k

wi,k,t−1εk,t| {wi,k,t−1} ∼ N

(
αi,t, V ar

(∑
k

wi,k,t−1εk,t| {wi,k,t−1}

))
∑
k

wi,k,t−1εk̂,t| {wi,k,t−1} ∼ N

(
0, V ar

(∑
k

wi,k,t−1εk̂,t|
{
wi,k̂,t−1

}))

3. Style well-specified by observable factors, no bias towards unobservable factors:

∑
k

wi,k,t−1 (γk.l − E (γk.l| {βk,j}))

≡
∑
k

wi,k,t−1δk.l

≈0
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Equivalently,

γi,l,t ≈
∑
k

wi,k,t−1γ̄k,l ≈ γ̂i,l,t

An important clarification is warranted. Definition 2 does not aim to exclusively

define all types of stock-picking skills under common sense. Instead, the definition only

serves to draw the boundary of the empirical search. In other words, a skilled stock-

picker under common sense might be excluded by Definition 2 for being significantly

under-diversified or biased towards certain unobservable factors to the econometrician.

The purpose of this project is to identify a large enough subset of all skilled stock-pickers

who are able to deliver positive alpha out of sample.

The rest of this subsection intends to show that, the return distribution of a skilled

stock-picker defined above is a mean shift from the return distribution of a corresponding

replica fund. That is

ri,t − αi,t ∼ r̂i,t

⇐⇒
∑
j

βi,j,tFj,t +
∑
l

γi,l,tfl,t +
∑
k

wi,k,t−1εk,t − αi,t

∼
∑
j

β̂i,j,tFj,t +
∑
l

γ̂i,l,tfl,t +
∑
k

wi,k,t−1εk̂,t

⇐⇒
∑
j

βi,j,tFj,t + vi,t + ei,t − αi,t ∼
∑
j

β̂i,j,tFj,t + v̂i,t + êi,t.

So far, the following have already been established:

1.
∑

j βi,j,tFj,t =
∑

j β̂i,j,tFj,t.

2. vi,t =
∑

l γi,l,tfl,t ≈ v̂i,t =
∑

l γ̂i,l,tfl,t.

3. ei,t ⊥ vi,t, ei,t ⊥
∑

j βi,j,tFj,t, êi,t ⊥ v̂i,t and êi,t ⊥
∑

j β̂i,j,tFj,t.

The next step is to prove that ei,t − αi,t ∼ êi,t for a skilled stock-picker.
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Proposition 7. For a skilled stock-picker defined in Definition 2, the residual risk of

the fund portfolio is a mean shift to that of the corresponding replica fund. That is,

ei,t − αi,t ∼ êi,t.

Proof. According to Central Limit Theorem,

ei,t| {wi,k,t−1} ∼ N

(
αi,t, V ar

(∑
k

wi,k,t−1εk,t| {wi,k,t−1}

))

êi,t| {wi,k,t−1} ∼ N

(
0, V ar

(∑
k

wi,k,t−1εk̂,t|
{
wi,k̂,t−1

}))

All we need to show is that V ar (
∑

k wi,k,t−1εk,t| {wi,k,t−1}) ≈ V ar
(∑

k wi,k,t−1εk̂,t|
{
wi,k̂,t−1

})
.

Notice that the real fund and the replica fund are picking stocks from the same stock

volatility buckets, so that

V ar (r̃k,t) = V ar
(
r̃k̂,t

)
⇐⇒ V ar

(∑
l

γk,lfl,t + εk,t

)
= V ar

(∑
l

γk̂,lfl,t + εk̂,t

)

On the other hand γk,l = γ̄k,l + δk,l and γk̂,l = γ̄k,l + δk̂,l, so that the difference between
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γk,l and γk̂,l could be diversified away. Therefore,

V ar

(∑
k

wi,k,t−1εk,t| {wi,k,t−1}

)

=
∑
k

w2
i,k,t−1V ar (εk,t)

=
∑
k

w2
i,k,t−1

(
V ar

(∑
l

γk,lfl,t + εk,t

)
− V ar

(∑
l

γk,lfl,t

))

=
∑
k

w2
i,k,t−1

(
V ar

(∑
l

γk̂,lfl,t + εk̂,t

)
− V ar

(∑
l

γk̂,lfl,t

))

+

(
V ar

(∑
l

γk̂,lfl,t

)
− V ar

(∑
l

γk,lfl,t

))

=V ar

(∑
k

wi,k,t−1εk̂,t|
{
wi,k̂,t−1

})
+
∑
k

w2
i,k,t−1

(
V ar

(∑
l

γk̂,lfl,t

)
− V ar

(∑
l

γk,lfl,t

))

∑
k

w2
i,k,t−1

(
V ar

(∑
l

γk̂,lfl,t

)
− V ar

(∑
l

γk,lfl,t

))

=
∑
k

w2
i,k,t−1

(∑
l

(
γ2
k̂,l
− γ2k,l

)
V ar (fl,t)

)

≈
∑
k

w2
i,k,t−1

(∑
l

2γ̄k,l

(
δk̂,l − δk,l

)
V ar (fl,t)

)

=2
∑
l

(∑
k

w2
i,k,t−1γ̄k,l

(
δk̂,l − δk,l

))
V ar (fl,t)

≈ 2

K

∑
l

(∑
k

wi,k,t−1γ̄k,l

(
δk̂,l − δk,l

))
V ar (fl,t)

LLN
≈ 0

Proposition 8. The return of a skilled stock-picker defined in Definition 2 is approxi-
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mately a mean shift to the return of the replica fund. That is,

ri,t − αi,t ∼ r̂i,t.

Proof. Directly from the fact that:

1.
∑

j βi,j,tFj,t =
∑

j β̂i,j,tFj,t.

2. vi,t =
∑

l γi,l,tfl,t ≈ v̂i,t =
∑

l γ̂i,l,tfl,t.

3. ei,t ⊥ vi,t, ei,t ⊥
∑

j βi,j,tFj,t, êi,t ⊥ v̂i,t and êi,t ⊥
∑

j β̂i,j,tFj,t.

4. ei,t − αi,t ∼ êi,t.

The intuition of this result is straightforward. According to Definition 2, the real

fund and the replica fund have the same exposures to all systematic risks. If the real

fund’s manager is skilled at picking stocks, then the idiosyncratic component of the real

fund’s return has higher mean compared to the replica fund’s return. On the other hand,

the distribution of the idiosyncratic component of the real fund has the same shape as

the replica fund due to the Central Limit Theorem and the fact that the volatility of the

stocks in both funds are matched by construction. The result then follows because of

the independence between the systematic and idiosyncratic components in fund returns.

Proposition 9. The return of a skilled stock-picker defined in Definition 2 first-order

stochastically dominates the return of the replica fund. That is,

ri,t
fsd
� r̂i,t.

Proof. The result is directly from Proposition 8 and the fact that αi,t > 0 according to

Definition 2.
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B. The Alternative FSD Test Statistic

As discussed in the footnote of Section 4.3, the FSD test statistic can be also constructed

as a variant of the Kolmogorov–Smirnov (KS) statistic. The original KS statistic is

defined as

KS ≡ max
x∈[0,1]

∣∣∣F̂ Pct(ri,t,〈r̂i,t〉) (x)− x
∣∣∣ ,

which detects whether the distribution of Pct (ri,t, 〈r̂i,t〉) differs from the standard uni-

form distribution (Unif (0, 1)).

The original Kolmogorov–Smirnov test is a two-sided test. However, the FSD con-

dition is a one-sided restriction on the CDF of the distribution. Therefore, one can also

construct an FSD test statistic by modifying the KS statistic:

θ̂ ≡ max
x∈[0,1]

(
F̂ Pct(ri,t,〈r̂i,t〉) (x)− x

)
.

Figure 13 illustrates the construction of the alternative FSD test statistic. From the

figure, it is clear that the FSD condition is better satisfied with a smaller test statistic.

Unlike the FSD test statistic constructed in Section 4, the alternative FSD test statistic

does not have a tractable asymptotic null distribution. Figure 14 plots the simulated

finite-sample null distribution of the alternative FSD test statistic. According to the

simulation, a test size of 10% (5%) corresponds to a critical value of 0.039 (0.027).

Table 11 documents the out-of-sample performance of the search based on the al-

ternative FSD test statistic. Comparing Table 11 to Table 4, one can see that the

alternative FSD test statistic generates similar empirical findings as the main FSD test

statistic. Alas, the out-of-sample alphas in the second stage are not perfectly monotonic

to in-sample alphas, with the alpha in Quintile 4 being smaller than Quintile 3 and 5.
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Figures

Figure 2: Graphical Illustration of the FSD Condition
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This figure offers a graphical illustration of the FSD condition. Panel (a) is a demon-
stration regarding the relation between Pct (ri,t, 〈r̂i,t〉) and Pct (r̂i,t, 〈r̂i,t〉). The dashed
line plots the PDF of Pct (r̂i,t, 〈r̂i,t〉), which is a flat horizontal line constant at 1
since Pct (r̂i,t, 〈r̂i,t〉) follows a standard uniform distribution. The solid line is an ex-

ample of Pct (ri,t, 〈r̂i,t〉). Since Pct (ri,t, 〈r̂i,t〉)
fsd
� Pct (r̂i,t, 〈r̂i,t〉), the solid line has

a smaller left tail compared to the dashed line, but a larger right tail in the PDF
plot. Panel (b) offers the illustration on the same relation with CDF plots. The

Pct (ri,t, 〈r̂i,t〉)
fsd
� Pct (r̂i,t, 〈r̂i,t〉) condition is reflected in the plot as the solid curve

strictly lies below the dashed line.
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Figure 3: FSD Test Statistic θ̂
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Test Statistic: θ̂ = length of —

This figure illustrates the construction of the FSD test statistic θ̂. The solid step
function is an illustration of the empirical CDF of Pct (ri,t, 〈r̂i,t〉). The test statistic θ̂
is constructed as the measure of the region where the empirical CDF falls below the
dashed 45 degree line.
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Figure 4: Simulated Null Distribution of the FSD Test Statistic

This figure plots finite-sample distribution of the FSD test statistic θ̂ constructed from
24 observations under the null hypothesis that Pct (ri,t, 〈r̂i,t〉) follows a standard uniform
distribution.
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Figure 5: The Heteroscedastic Case: Filter Accuracy

(a) The αi > 0 Filter (b) The ri,t
fsd
� r̂i,t Filter

The plot compares the accuracy of the αi > 0 and the ri,t
fsd
� r̂i,t filters when idiosyn-

cratic volatility is time-varying. The x-axis is the formation period from which the
performance measures are constructed. The y-axis is the average number of skilled
managers that the corresponding performance measure is able to identify over 500 sim-
ulation paths. The black solid (blue dotted, red dashed) line represents the level of
heteroscedasticity with ζ = 0.0012 (ζ = 0.0018, ζ = 0.0024∗). Panel (a) plots the effec-

tiveness of the αi > 0 filter; whereas Panel (b) plots the effectiveness of the ri,t
fsd
� r̂i,t

filter.
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Figure 6: Detection for Uncontrolled Factors
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This figure offers a graphical illustration of the detection mechanism of the FSD con-
dition to exclude mis-specified managers. Panel (a) shows that the PDF of the mis-
specified manager’s ranking (Pct (ri,t, 〈r̂i,t〉)) has both larger left and right tails com-
pared to the standard uniform distribution due to the uncontrolled risk factor; Panel
(b) shows that the CDF of the mis-specified manager’s ranking (Pct (ri,t, 〈r̂i,t〉) goes
above the 45 degree line for some region, thereby violating the FSD condition.
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Figure 7: Mis-specified Return Distribution

Return
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This figure illustrates that the return distribution of a mis-specified manager carries a
heavier left tail compared to the return distribution of the replica fund, thereby violating
the FSD condition.
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Figure 8: The Mis-specification Case: Filter Accuracy

(a) The αi > 0 Filter (b)The ri,t
fsd
� r̂i,t Filter

The plot compares the accuracy of the αi > 0 and the ri,t
fsd
� r̂i,t filters in the presence

of benchmark mis-specification. The x-axis is the formation period from which the
performance measures are constructed. The y-axis is the average number of skilled
managers that the corresponding performance measure is able to identify over 500
simulation paths. The black solid (blue dotted, red dashed) line represents the situation
where benchmark mis-specification is mild σf = 0.01 (moderate σf = 0.03, severe
σf = 0.05). Panel (a) plots the effectiveness of the αi > 0 filter; whereas Panel (b) plots

the effectiveness of the ri,t
fsd
� r̂i,t filter.
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Figure 9: The Mis-specification Case: Filter Mistake

(a) The αi > 0 Filter (b)The ri,t
fsd
� r̂i,t Filter

The plot compares the tendency to select mis-specified managers of the αi > 0 and

the ri,t
fsd
� r̂i,t filters in the presence of benchmark mis-specification. The x-axis is the

formation period from which the performance measures are constructed. The y-axis
is the average number of mis-specified managers that the corresponding performance
measure erroneously selects over 500 simulation paths. The black solid (blue dotted,
red dashed) line represents the situation where benchmark mis-specification is mild
σf = 0.01 (moderate σf = 0.03, severe σf = 0.05). Panel (a) plots the performance of

the αi > 0 filter; whereas Panel (b) plots the performance of the ri,t
fsd
� r̂i,t filter.
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Figure 10: Out-of-sample Fund Performances: Time Series

(a) 1st Stage

(b) Top α Quintile, 2nd Stage

This panel of plots documents the time-series of the before-fees performances of the
selected mutual funds. Panel (a) plots the time-series of the fund performances for
all funds satisfying the FSD condition; whereas Panel (b) plots the top quintile of the
funds with the highest historical α within the funds satisfying the FSD condition. The
blue dashed line is the cumulative before-fees return of the selected mutual funds, and
the red solid line is cumulative return of the market.
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Figure 11: Out-of-sample Fund Outperformances: Time Series

(a) 1st Stage

(b) Top α Quintile, 2nd Stage

This panel of plots documents the time-series of the before-fees out-performances of
the selected mutual funds. The out-performance is defined as the cumulative return of
longing the portfolio of the identified funds and shorting the market. Panel (a) plots
the time-series of the fund out-performances for all funds satisfying the FSD condition;
whereas Panel (b) plots the top quintile of the funds with the highest historical α within
the funds satisfying the FSD condition.
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Figure 12: Out-of-sample Fund Excess Returns: Histogram

(a) 1st Stage

(b) Top α̂ Quintile, 2nd Stage

This panel of plots documents the histograms of the before-fees Carhart excess returns
of the selected mutual funds. Panel (a) plots the histogram for all funds satisfying the
FSD condition; whereas Panel (b) plots the histogram of the top quintile of the funds
with the highest historical α within the funds satisfying the FSD condition.
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Figure 13: Alternative FSD Test Statistic
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Test Statistic: θ̂ = length of ←→

This figure illustrates the construction of the alternative FSD test statistic. The solid
step function is an illustration of the empirical CDF of Pct (ri,t, 〈r̂i,t〉). The alternative
FSD test statistic is defined as θ̂i ≡ max

(
F̂ Pct(ri,t,〈r̂i,t〉) (x)− x

)
.
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Figure 14: Simulated Null Distribution of the Alternative FSD Test Statis-
tic

This figure plots finite-sample distribution of the alternative FSD test statistic (θ̂ ≡
max

(
F̂ Pct(ri,t,〈r̂i,t〉) (x)− x

)
) constructed from 24 observations under the null hypothesis

that Pct (ri,t, 〈r̂i,t〉) follows a standard uniform distribution.
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Tables

Table 2: Bootstrap Example

Stock Ticker Bucket No. Weight(%)
ABT 597 5.24
BEN 552 4.68
BK 576 6.73
BRK 561 4.65
CHK 603 8.07
CNX 428 7.16
DELL 529 5.55
DIS 598 5.70
DTV 502 8.19
FDX 534 8.00
L 581 10.00

LVLT 405 6.15
MDLZ 592 5.39
PHG 356 1.26
TRV 568 6.65
VMC 489 6.58

(a) The Real Fund

Stock Ticker Bucket No. Weight(%)
MO 597 5.24
DOV 552 4.68
SYK 576 6.73
PG 561 4.65
C 603 8.07

BBY 428 7.16
A 529 5.55
DIS 598 5.70
WU 502 8.19
FDX 534 8.00
MDT 581 10.00
LVLT 405 6.15
MDLZ 592 5.39
PHG 356 1.26
FISV 568 6.65
ARW 489 6.58

(b) The Replica Fund

This table offers an example in order to illustrate the bootstrap procedure that con-
structs replica portfolios and the counterfactual return distribution. Panel (a) is a
snapshot of the portfolio of Longleaf Partners Fund by the end of 2012/12. Panel (b) is
a simulated replica portfolio. The replica portfolio is created by replacing each stock in
the real portfolio with another stock that is randomly chosen in the same bucket as the
original stock. As an extension of Daniel et al. (1997), the buckets are defined by four
stock characteristics: size, book-to-market, momentum and volatility. The portfolio
weights of the replica fund are identical as the real fund.
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Table 3: Fund Characteristics Summary

Year # of Funds Age TNA (in 106 $) # of Stocks Fees (in bps)
1991 178 20 583 89 110
1992 213 19 684 92 128
1993 250 17 776 98 131
1994 282 17 778 95 128
1995 299 18 1175 102 127
1996 312 18 1560 110 125
1997 387 17 1783 110 120
1998 473 16 1941 104 119
1999 589 15 2312 111 123
2000 642 15 1871 105 123
2001 705 14 1472 115 126
2002 847 14 1071 107 134
2003 948 14 1367 109 136
2004 1043 14 1462 107 133
2005 1130 14 1470 115 131
2006 1195 14 1537 116 127
2007 1233 15 1643 117 122
2008 1260 15 913 121 123
2009 1275 16 1227 125 125
2010 1235 16 1406 121 122
2011 1268 16 1293 108 117
2012 1272 17 1408 110 116
2013 1254 17 1925 114 113
2014 1197 18 2033 111 111
2015 1163 19 1984 113 110

This table documents the characteristics of the funds in my sample. The documented
characteristics include total number of funds in the sample, the average fund age, the
average total net assets in million dollars, the average number of stocks that a fund
holds, the average fee that a fund charges in basis points per year.
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Table 4: Out-of-sample Performances of the FSD Selected Funds

Quintile Sample Share α (in %) mkt smb hml umd SR IR
Before Fees

1 1.83% 0.57 1.03*** 0.29*** 0.03 0.05** 0.60 0.13
[ 0.62] [ 47.0] [ 9.29] [ 0.79] [ 2.53]

2 1.94% 1.48* 1.01*** 0.20*** 0.07** 0.02 0.65 0.36
[ 1.77] [ 56.9] [ 5.87] [ 2.32] [ 1.11]

3 1.96% 2.24** 1.00*** 0.23*** 0.09** 0.05** 0.72 0.50
[ 2.41] [ 43.4] [ 6.77] [ 2.11] [ 2.53]

4 1.94% 2.38** 1.03*** 0.27*** 0.01 0.06** 0.70 0.49
[ 2.47] [ 46.7] [ 6.98] [ 0.25] [ 2.47]

5 1.88% 3.71*** 1.07*** 0.44*** −0.10*** 0.08*** 0.74 0.70
[ 3.35] [ 38.9] [ 13.2] [−2.83] [ 3.28]

1st Stage 9.55% 2.03*** 1.03*** 0.28*** 0.02 0.05*** 0.69 0.56
[ 2.78] [ 61.1] [ 10.5] [ 0.70] [ 2.98]

All Funds 100% 0.04 1.00*** 0.21*** 0.02 0.01 0.56 0.02
[ 0.07] [ 81.4] [ 10.7] [ 1.17] [ 0.95]

After Fees
1 1.83% −0.69 1.03*** 0.29*** 0.03 0.05** 0.52 −0.15

[−0.74] [ 47.0] [ 9.25] [ 0.79] [ 2.55]
2 1.94% 0.29 1.01*** 0.20*** 0.07** 0.02 0.58 0.07

[ 0.35] [ 57.2] [ 5.86] [ 2.30] [ 1.09]
3 1.96% 1.02 1.00*** 0.23*** 0.09** 0.05** 0.64 0.23

[ 1.09] [ 43.4] [ 6.74] [ 2.09] [ 2.55]
4 1.94% 1.10 1.03*** 0.27*** 0.01 0.06** 0.63 0.22

[ 1.14] [ 46.7] [ 6.98] [ 0.26] [ 2.49]
5 1.88% 2.40** 1.07*** 0.44*** −0.10*** 0.08*** 0.66 0.45

[ 2.17] [ 39.2] [ 13.3] [−2.86] [ 3.30]
1st Stage 9.55% 0.78 1.03*** 0.28*** 0.02 0.05*** 0.62 0.22

[ 1.07] [ 61.2] [ 10.5] [ 0.68] [ 2.99]
All Funds 100% −1.18** 1.01*** 0.21*** 0.02 0.01 0.48 −0.53

[−2.39] [ 81.9] [ 10.7] [ 1.17] [ 1.00]

This table documents the out-of-sample performances of the funds whose returns first
order stochastically dominated the returns of the replica funds during the 24 months
prior to portfolio formation. Specifically, by the end of each quarter, the empirical CDF
of the percentile of each fund in the counterfactual return distribution (F Pct(ri,t,〈r̂i,t〉) (x))
is computed. The FSD test statistic θ̂ is then constructed for each fund. The first stage
selects funds with θ̂ ≥ 0.90, which corresponds to a test size of 10%. The selected funds
are then sorted into 5 quintiles based on their proceeding 24 months’ four-factor alpha.
The trading strategy is rebalanced every three months. The post-ranking annualized
alphas and factor loadings are documented along with their heteroscedasticity-robust
t-statistics. “Sample Share” is the number of funds in the portfolio as a percentage of
the cross section. The sample period is from January 1991 to December 2015.
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Table 5: Out-of-sample Performance of Alternative Performance Measure:
Alpha

Quintile Sample Share α (in %) mkt smb hml umd SR IR
Before Fees

1 1.90% 0.02 1.00*** 0.35*** −0.03 0.04* 0.55 0.00
[ 0.02] [ 55.2] [ 8.95] [−1.00] [ 1.77]

2 2.02% 0.71 1.03*** 0.34*** −0.07** 0.08*** 0.60 0.19
[ 0.91] [ 57.3] [ 11.8] [−2.33] [ 3.86]

3 2.02% 0.81 1.06*** 0.36*** −0.16*** 0.06** 0.56 0.17
[ 0.87] [ 42.8] [ 12.6] [−3.52] [ 2.44]

4 2.02% 2.80*** 1.04*** 0.44*** −0.20*** 0.04 0.64 0.53
[ 2.64] [ 38.0] [ 10.1] [−4.76] [ 1.41]

5 1.95% 1.25 1.09*** 0.49*** −0.22*** 0.05 0.55 0.22
[ 1.03] [ 35.1] [ 12.8] [−6.12] [ 1.35]

1st Stage 9.89% 1.13 1.05*** 0.40*** −0.14*** 0.05** 0.59 0.30
[ 1.46] [ 52.9] [ 14.2] [−4.44] [ 2.32]

All Funds 100% 0.04 1.00*** 0.21*** 0.02 0.01 0.56 0.02
[ 0.07] [ 81.4] [ 10.7] [ 1.17] [ 0.95]

After Fees
1 1.90% −1.18 1.00*** 0.35*** −0.03 0.04* 0.48 −0.31

[−1.57] [ 55.4] [ 8.99] [−1.01] [ 1.78]
2 2.02% −0.57 1.04*** 0.34*** −0.07** 0.08*** 0.52 −0.15

[−0.73] [ 57.2] [ 11.8] [−2.31] [ 3.88]
3 2.02% −0.50 1.07*** 0.36*** −0.16*** 0.06** 0.49 −0.11

[−0.54] [ 43.9] [ 12.6] [−3.54] [ 2.47]
4 2.02% 1.53 1.05*** 0.44*** −0.20*** 0.04 0.57 0.29

[ 1.44] [ 38.3] [ 10.2] [−4.78] [ 1.41]
5 1.95% −0.08 1.09*** 0.49*** −0.23*** 0.05 0.48 −0.02

[−0.07] [ 35.1] [ 12.9] [−6.10] [ 1.33]
1st Stage 9.89% −0.16 1.05*** 0.40*** −0.14*** 0.06** 0.52 −0.04

[−0.21] [ 53.4] [ 14.2] [−4.44] [ 2.33]
All Funds 100% −1.18** 1.01*** 0.21*** 0.02 0.01 0.48 −0.53

[−2.39] [ 81.9] [ 10.7] [ 1.17] [ 1.00]

This table documents the out-of-sample performances of the funds selected by the four-
factor alpha during the 24 months prior to portfolio formation. Specifically, by the end
of each quarter, the top 10% funds with highest historical alpha are selected in the first
stage. The selected funds are then sorted into 5 quintiles based on their proceeding
24 months’ four-factor alpha. The trading strategy is rebalanced every three months.
The post-ranking annualized alphas and factor loadings are documented along with
their heteroscedasticity-robust t-statistics. “Sample Share” is the number of funds in
the portfolio as a percentage of the cross section. The sample period is from January
1991 to December 2015.
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Table 6: Out-of-sample Performance of Alternative Performance Measure:
Information Ratio (IR)

Quintile Sample Share α (in %) mkt smb hml umd SR IR
Before Fees

1 1.90% 0.71 0.94*** −0.04* 0.09*** 0.01 0.61 0.27
[ 1.29] [ 75.7] [−1.65] [ 3.95] [ 0.95]

2 2.02% 1.78** 0.94*** 0.13*** 0.10*** 0.01 0.68 0.48
[ 2.29] [ 48.9] [ 4.49] [ 3.00] [ 0.47]

3 2.02% 1.53** 0.97*** 0.31*** 0.02 0.07*** 0.67 0.44
[ 2.25] [ 67.7] [ 12.6] [ 0.56] [ 3.63]

4 2.02% 2.54** 1.04*** 0.35*** −0.16*** 0.05* 0.65 0.51
[ 2.55] [ 38.8] [ 8.64] [−3.61] [ 1.78]

5 1.95% 1.98* 1.06*** 0.48*** −0.19*** 0.06* 0.61 0.39
[ 1.82] [ 37.0] [ 14.1] [−5.43] [ 1.95]

1st Stage 9.89% 1.69*** 0.99*** 0.25*** −0.03 0.04** 0.66 0.57
[ 2.81] [ 68.2] [ 10.7] [−1.30] [ 2.27]

All Funds 100% 0.04 1.00*** 0.21*** 0.02 0.01 0.56 0.02
[ 0.07] [ 81.4] [ 10.7] [ 1.17] [ 0.95]

After Fees
1 1.90% −0.29 0.95*** −0.04* 0.09*** 0.01 0.54 −0.11

[−0.52] [ 74.8] [−1.67] [ 3.81] [ 0.80]
2 2.02% 0.56 0.94*** 0.13*** 0.10*** 0.01 0.60 0.15

[ 0.72] [ 49.7] [ 4.45] [ 3.01] [ 0.47]
3 2.02% 0.31 0.98*** 0.31*** 0.02 0.07*** 0.60 0.09

[ 0.45] [ 67.9] [ 12.6] [ 0.59] [ 3.71]
4 2.02% 1.32 1.04*** 0.35*** −0.16*** 0.05* 0.58 0.26

[ 1.32] [ 39.1] [ 8.65] [−3.63] [ 1.78]
5 1.95% 0.67 1.07*** 0.48*** −0.19*** 0.06* 0.54 0.13

[ 0.61] [ 37.0] [ 14.2] [−5.41] [ 1.92]
1st Stage 9.89% 0.49 0.99*** 0.25*** −0.03 0.04** 0.58 0.16

[ 0.81] [ 69.0] [ 10.7] [−1.30] [ 2.26]
All Funds 100% −1.18** 1.01*** 0.21*** 0.02 0.01 0.48 −0.53

[−2.39] [ 81.9] [ 10.7] [ 1.17] [ 1.00]

This table documents the out-of-sample performances of the funds selected by the
information ratio (IR) and four-factor alpha during the 24 months prior to portfolio
formation. Specifically, by the end of each quarter, the top 10% funds with highest
historical IR are selected in the first stage. The selected funds are then sorted into 5
quintiles based on their proceeding 24 months’ four-factor alpha. The trading strategy is
rebalanced every three months. The post-ranking annualized alphas and factor loadings
are documented along with their heteroscedasticity-robust t-statistics. “Sample Share”
is the number of funds in the portfolio as a percentage of the cross section. The sample
period is from January 1991 to December 2015.
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Table 7: Characteristics of the FSD Selected Funds

Quintile Sample Age Age TNA # of
Stocks

Fees Fees Turnover Turnover

Share Norm. Norm. Norm. (in bps) Norm. Ratio Norm.
1 1.83% 15.16 0.93 0.66 1.05 129.36 1.05 0.84 1.04
2 1.94% 16.27 1.00 0.99 1.09 118.01 0.96 0.70 0.87
3 1.96% 15.08 0.93 0.88 1.02 120.78 0.98 0.72 0.89
4 1.94% 15.65 0.96 0.95 0.96 126.99 1.03 0.75 0.93
5 1.88% 15.79 0.97 0.88 0.79 136.46 1.10 0.83 1.03

1st Stage 9.55% 15.58 0.96 0.88 0.98 126.06 1.02 0.77 0.95
All Funds 100% 16.24 1.00 1.00 1.00 123.40 1.00 0.81 1.00

This table documents the characteristics of the funds selected by the FSD filter and
compare them with the cross-sectional average. “Norm.” denotes the normalization
procedure that takes the ratio of the corresponding variable with the cross-sectional
average when all funds in the sample are included. “Sample Share” is the number of
funds in the portfolio as a percentage of the cross section. The sample period is from
January 1991 to December 2015.
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Table 8: The Return Gaps

Quintile Sample Share αrgap (in %) mkt smb hml umd
1 1.83% 0.78** 0.03*** 0.03* −0.01 0.02***

[ 2.35] [ 3.63] [ 1.88] [−0.92] [ 3.64]
2 1.94% 0.79*** 0.03*** 0.02 0.00 0.02***

[ 3.66] [ 5.21] [ 1.60] [ 0.21] [ 3.68]
3 1.96% 0.96*** 0.04*** 0.01 0.00 0.01***

[ 3.57] [ 5.41] [ 0.61] [ 0.20] [ 2.96]
4 1.94% 0.72*** 0.03*** 0.01 0.00 0.01**

[ 2.68] [ 4.09] [ 1.32] [−0.10] [ 2.20]
5 1.88% 1.63*** 0.03** −0.02 −0.03 0.03***

[ 3.15] [ 2.26] [−0.64] [−1.27] [ 2.61]
1st Stage 9.55% 0.98*** 0.03*** 0.02 0.00 0.02***

[ 4.75] [ 5.17] [ 1.22] [−0.31] [ 4.12]
All Funds 100% 0.18 0.01** 0.02 0.00 0.02***

[ 0.93] [ 2.17] [ 1.62] [ 0.58] [ 4.03]

This table documents the return gaps of the FSD selected mutual funds. The return gap
is defined as the difference between a mutual fund’s actual return versus the hypothetical
return generated by keeping the holdings within the mutual fund’s portfolio by the end
of the proceeding quarter. The time-series of the return gaps of different funds are
then averaged within the corresponding quintiles and regressed against the Carhart four
factors. The portfolios are rebalanced every three months. The post-ranking annualized
alphas and factor loadings are documented along with their heteroscedasticity-robust
t-statistics. “Sample Share” is the number of funds in the portfolio as a percentage of
the cross section. The sample period is from January 1991 to December 2015.
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Table 9: Performance of the Mimicking Strategy

Quintile Sample Share α (in %) mkt smb hml umd SR IR
1 1.83% 0.38 1.06*** 0.26*** 0.06 −0.04* 0.54 0.07

[ 0.34] [ 38.0] [ 6.26] [ 1.46] [−1.94]
2 1.94% 1.25 1.07*** 0.17*** 0.06* −0.06*** 0.59 0.28

[ 1.42] [ 54.8] [ 3.73] [ 1.76] [−3.14]
3 1.96% 1.63 1.06*** 0.24*** 0.11** 0.00 0.64 0.32

[ 1.58] [ 39.9] [ 5.15] [ 2.19] [−0.06]
4 1.94% 1.50 1.09*** 0.29*** −0.01 −0.01 0.60 0.28

[ 1.45] [ 45.0] [ 6.02] [−0.20] [−0.31]
5 1.88% 2.24** 1.15*** 0.43*** −0.11*** 0.00 0.61 0.40

[ 1.97] [ 37.5] [ 9.88] [−3.00] [ 0.04]
1st Stage 9.55% 1.33 1.09*** 0.27*** 0.02 −0.02 0.60 0.32

[ 1.64] [ 53.6] [ 6.87] [ 0.68] [−1.30]
All Funds 100% 0.28 1.09*** 0.18*** 0.00 −0.08*** 0.52 0.10

[ 0.49] [ 66.5] [ 5.44] [−0.03] [−6.69]

This table documents the performance of the trading strategy that aims to mimic the
performances of the FSD selected mutual funds. To ensure implementability, by the end
of each quarter, the stock holdings from the end of the previous quarter are retrieved
for the managers who have been identified as skilled. The trading strategy then invests
in the stocks that the managers were holding as of the end of the previous quarter. The
portfolios are rebalanced every three months. The post-ranking annualized alphas and
factor loadings are documented along with their heteroscedasticity-robust t-statistics.
“Sample Share” is the number of funds in the portfolio as a percentage of the cross
section. The sample period is from January 1991 to December 2015.
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Table 10: Flow Responses

Flowi,t Flowi,t Flowi,t Flowi,t

α̂
[t−1−T,t−1]
i 2.58*** 2.38*** 2.28*** 2.27***

[ 40.0] [ 37.7] [ 37.5] [ 37.4]
FSDi,t−1 (×100) 0.94*** 0.46***

[ 17.8] [ 7.41]
FSDi,t−1 × α̂[t−1−T,t−1]

i 1.85*** 1.12***
[ 16.5] [ 7.96]

Controls Y Y Y Y
# of Obs 227710 227710 227710 227710

This table documents the Fama-Macbeth regression results of

Flowi,t = Const+ δ0 × FSDi,t−1 + (β + δ1 × FSDi,t−1)× α̂[t−1−T,t−1]
i +Xi + εi,t.

The dependent variable is the flow of each fund in every month, and the independent
variables include the trailing in-sample alpha, the dummy variable corresponding to
the FSD condition, and the interaction between the two. The control variables include
fund age, log fund size, fees, and the number of stocks in the portfolio. The sample
period is from January 1991 to December 2015.
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Table 11: Out-of-sample Performance of the Alternative FSD test statistic

Quintile Sample Share α (in %) mkt smb hml umd SR IR
Before Fees

1 1.74% 0.97 1.02*** 0.24*** 0.05 0.04* 0.62 0.22
[ 1.06] [ 49.2] [ 7.81] [ 1.26] [ 1.96]

2 1.86% 1.30 1.02*** 0.20*** 0.05* 0.02 0.63 0.30
[ 1.48] [ 54.1] [ 5.76] [ 1.73] [ 1.08]

3 1.85% 2.73*** 0.98*** 0.17*** 0.11** 0.03 0.75 0.60
[ 2.93] [ 38.5] [ 4.23] [ 2.37] [ 1.40]

4 1.86% 1.30 1.02*** 0.28*** 0.04 0.05** 0.64 0.26
[ 1.33] [ 46.4] [ 7.73] [ 1.03] [ 1.99]

5 1.78% 3.53*** 1.06*** 0.42*** −0.10*** 0.07*** 0.72 0.68
[ 3.26] [ 38.7] [ 12.5] [−2.97] [ 2.81]

1st Stage 9.08% 1.97*** 1.02*** 0.26*** 0.03 0.04** 0.69 0.53
[ 2.62] [ 57.0] [ 9.31] [ 0.95] [ 2.42]

All Funds 100% 0.04 1.00*** 0.21*** 0.02 0.01 0.56 0.02
[ 0.07] [ 81.4] [ 10.7] [ 1.17] [ 0.95]

After Fees
1 1.74% −0.30 1.03*** 0.24*** 0.05 0.04** 0.55 −0.07

[−0.32] [ 49.0] [ 7.77] [ 1.24] [ 1.99]
2 1.86% 0.06 1.03*** 0.20*** 0.05* 0.02 0.56 0.01

[ 0.07] [ 54.4] [ 5.75] [ 1.71] [ 1.05]
3 1.85% 1.49 0.99*** 0.17*** 0.11** 0.03 0.67 0.33

[ 1.59] [ 38.5] [ 4.22] [ 2.36] [ 1.44]
4 1.86% 0.02 1.02*** 0.28*** 0.04 0.05** 0.56 0.00

[ 0.02] [ 46.4] [ 7.71] [ 1.02] [ 2.01]
5 1.78% 2.21** 1.07*** 0.42*** −0.10*** 0.07*** 0.65 0.43

[ 2.04] [ 38.9] [ 12.5] [−2.99] [ 2.84]
1st Stage 9.08% 0.70 1.03*** 0.26*** 0.03 0.04** 0.61 0.19

[ 0.93] [ 57.1] [ 9.28] [ 0.92] [ 2.43]
All Funds 100% −1.18** 1.01*** 0.21*** 0.02 0.01 0.48 −0.53

[−2.39] [ 81.9] [ 10.7] [ 1.17] [ 1.00]

This table documents the out-of-sample performance of the filter constructed with the
alternative FSD test statistic (maxx∈[0,1]

(
F̂ Pct(ri,t,〈r̂i,t〉) (x)− x

)
). Specifically, by the

end of each quarter, the empirical CDF of the percentile of each fund in the coun-
terfactual return distribution (F Pct(ri,t,〈r̂i,t〉) (x)) is computed. The alternative FSD test
statistic θ̂ is then constructed for each fund. The first stage selects funds with θ̂ ≤ 0.039,
which corresponds to a test size of 10%. The selected funds are then sorted into 5 quin-
tiles based on their proceeding 24 months’ four-factor alpha. The trading strategy is
rebalanced every three months. The post-ranking annualized alphas and factor loadings
are documented along with their heteroscedasticity-robust t-statistics. “Sample Share”
is the number of funds in the portfolio as a percentage of the cross section. The sample
period is from January 1991 to December 2015.
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