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Abstract 
 
 Since the breakdown of the Bretton Woods agreement, researchers have used a wide variety 

of structural models to try to predict exchange rate movements.  Unfortunately, finding 

consistent evidence that these models outperform a random walk has proven elusive.  In this 

paper we investigate the impact different methods of inference may have had on these 

conclusions.  Using p-values based on recently developed tests of forecast accuracy and 

encompassing, as well as q-values designed to mitigate multiple testing problems, we provide 

stronger evidence consistent with these models having superior predictive ability. Our results 

suggest that previous studies’ inability to detect predictive ability may have been influenced by 

the statistics used and the manner in which they were employed. 
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1. Introduction 

 When the Bretton Woods Agreement broke down in 1973, most of the large industrialized 

countries allowed their exchange rates to float against one another.  Because this was the first 

widespread floating of exchange rates in over fifty years, researchers were motivated to develop 

and estimate empirical models to understand the observed movements in exchange rates.  

Although preliminary studies had some success at explaining exchange rates, by the early 1980’s 

many of the early successes were being overturned. 

 One of the most significant negative results was Meese and Rogoff (1983a, b).  They analyze 

the predictive ability of a series of linear structural exchange rate models and found that none 

was able to consistently outperform a simple random walk across various exchange rates and 

forecast horizons.  Despite the robustness of this result (e.g. Mark and Sul (2002), Rapach and 

Wohar (2002) and Faust, Rogers and Wright (2003)), there is some evidence of linear structural 

models outperforming random walk models (e.g. Chinn and Meese (1995), Mark (1995), and 

MacDonald and Marsh (1997)).  Recent work using non-linear models has also shown promise 

(e.g. Taylor, Peel and Sarno (2001), Cheung, Chinn and Pascual (2002), Clarida, Sarno, Taylor 

and Valente (2003), and Kilian and Taylor (2003)). 

 Because the original results of Meese and Rogoff (1983a, b) have yet to be convincingly 

overturned, we investigate the role that the method of inference may have played in determining 

whether or not structural exchange rate models exhibit superior predictive ability to the random 

walk model.  Much of the existing literature, including Meese and Rogoff (1988) and recent 

extensions such as Cheung, Chinn and Pascual (2002), implement a t-type test of equal forecast 

accuracy recently associated with Diebold and Mariano (1995).  Inference is conducted treating 

these statistics as asymptotically standard normal.  As discussed in Section 2, such an 

approximation is valid when comparing the forecast accuracy of two non-nested models but is 
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invalid when comparing two nested models.  Since the structural models typically nest the 

random walk model, using normal critical values is inappropriate and the resulting p-values do 

not accurately reflect the significance of the test statistic. 

 In this paper we evaluate the predictive ability of linear structural exchange rate models, 

including the monetary model (Frenkel (1976), Mussa (1976) and Bilson (1978)), relative to the 

random walk model with drift using test statistics explicitly designed for an out-of-sample 

comparison of nested models.  Building upon the results in West (1996), McCracken (2000) and 

Clark and McCracken (2001) derive the limiting distributions of four out-of-sample tests of 

forecast accuracy and encompassing for one-step ahead forecasts from nested models.  Clark and 

McCracken (2003a) extend their results to allow multi-step forecasts from long-horizon 

regressions.  In related work, Chao, Corradi and Swanson (2001) derive a test of forecast 

encompassing that is applicable when one-step ahead forecasts are constructed from either nested 

or non-nested models.  In Section 2 of this paper, we provide an extension of their test that 

allows for forecasts from longer horizons. 

 Each of the encompassing tests associated with Chao, Corradi and Swanson (2001) are 

asymptotically chi-square and hence asymptotically valid p-values are readily constructed using 

the relevant tables.  Since the remaining tests have nonstandard limiting distributions that are 

usually dependent upon unknown nuisance parameters, we follow Clark and McCracken (2003a) 

in using a bootstrap similar to that in Kilian (1999) to estimate asymptotically valid critical 

values and construct asymptotically valid p-values. 

 Another reason for using these new tests is that Clark and McCracken (2001, 2003a, b) 

provide analytical, Monte Carlo and empirical evidence that some out-of-sample tests of 

predictive ability have greater power than others.  In particular they show that the commonly 

used t-type tests of either forecast accuracy or encompassing have lower power than their F-type 
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counterparts.  Since much of the literature in this area, including Meese and Rogoff (1988), Mark 

(1995), Kilian (1999) and Cheung, Chinn and Pascual (2002) focus on t-type tests of forecast 

accuracy, it may be that their results are due in part to using tests that have low power.1 

 Using these new tests we begin our analysis as in Mark (1995) by investigating the predictive 

ability of the monetary model for quarterly US dollar exchange rates with the German mark, 

Canadian dollar, Japanese yen and Swiss franc.  Using data from 1973 to 1991, Mark (1995) 

finds evidence of predictive ability for the monetary model.  He also suggests that the predictive 

ability should increase as the forecast horizon increases and the results would be even stronger in 

a longer data series.  Due to the striking nature of his results, this study has been the focus of 

much subsequent work.  For example, Kilian (1999) replicates his analysis using a slightly 

modified technique and longer time series but comes to a different conclusion.  Faust, Rogers 

and Wright (2003) suggest that his results were strongly influenced by a fortuitous choice of time 

period.  Berben and van Dijk (1998) and Berkowitz and Giorgianni (2001) found a potentially 

large impact of his assumption of cointegration on both the estimation technique and the 

distribution of the test statistics.2  Rapach and Wohar (2002) consider a century of annual data 

rather than post-Bretton Woods quarterly data. 

 Based on quarterly, post-Bretton Woods data from 1973 to 1998 we provide evidence that 

many structural models exhibit more predictability than previously believed. In our tests we use 

the random walk with drift as our benchmark to more clearly isolate the marginal contribution of 

the fundamental factors as suggested in Kilian (1999). We find that for the monetary model, the 

new F-type tests of equal forecast accuracy indicate more short-horizon predictability (especially 

for Germany) and more long-horizon predictability (especially for Canada and Switzerland) than 

is found using the t-type test of forecast accuracy used in Mark (1995) and Kilian (1999).  The 

results are robust across the linear structural exchange rate models considered.  The evidence of 
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predictive ability is reinforced when we consider the tests of forecast encompassing.  Again we 

find that the F-type tests provide stronger evidence of predictive ability than the t-type tests 

though the evidence is less uniform than that for the tests of forecast accuracy. 

 This evidence of predictive ability is subject to the criticism that we have a multiple testing 

problem.  This issue arises because we are conducting inference on 4 distinct models of 4 

bilateral exchange rates at 5 horizons using 5 test statistics yielding 400 separate test statistics.  

In that light it is not surprising that we would find predictive ability using p-value thresholds of 

5% and 10%.  However, we do not reach our conclusions based solely on the use of p-value 

thresholds.  We strengthen our arguments using procedures recently receiving attention in the 

statistical genetics literature where literally thousands of genes are often tested for specific 

properties.  These procedures involve constructing not only asymptotically valid estimates of p-

values but also q-values.  Both p- and q-values can be interpreted as measures of a statistic’s 

significance, each from a different perspective.  For example, if a test statistic has a p-value of 

5% we would expect that among a random sample of pairs of hypotheses and statistics from the 

same population as the statistic, on average 5% of those hypotheses that are null will have 

statistics that reject.  Conversely, if a statistic has a q-value of 5% we expect that on average 5% 

of the statistics that reject actually correspond to null hypotheses.  We construct these q-values 

using methods discussed in Storey (2002).  A more complete description of q-values is provided 

in Section 2. 

 The remainder develops as follows.  In Section two we discuss the tests used to detect 

predictive ability as well as the assumptions necessary for their application.  Section three 

discusses the structural exchange rate models we use for forecasting and other details about our 

data and empirical methods.  Section four presents empirical evidence on the predictive ability of 

the structural exchange rate models.  The final section concludes. 
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2. Testing Procedures and Environment 

 The framework we use to evaluate predictive ability is similar in spirit to that used in Meese 

and Rogoff (1983a, b) but is closest to that in Mark (1995) and Kilian (1999).  That is, we 

consider whether structural model-based long-horizon regressions of log-exchange rates provide 

superior predictive ability to a random walk with drift in log-exchange rates using out-of-sample 

methods.  The intuition for using out-of-sample methods is that if one of the models can be 

shown to predict better than another in such a forecasting exercise then it may continue to do so 

as more data become available. 

 
Environment 

 The sample of covariance stationary observables ' T
t 2,t t 1{y , x } =  includes a scalar random 

variable yt to be predicted (e.g. the changes in log exchange rates) and a (k1 + k2 = k×1) vector of 

potential predictors x2,t = ' ' '
1,t 22,t(x , x ) .  The sample is divided into in-sample and out-of-sample 

portions.  The in-sample portion spans observations 1 to R.  Letting P − τ + 1 denote the number 

of τ-step (1 ≤ τ) ahead forecasts, the out-of-sample observations span R + τ through R + P.  The 

total number of observations in the sample is R + P = T.  

 Forecasts of yt+τ, t = R,…,T − τ, are generated using two linear models of the form ' *
i,t ix β , i = 

1, 2.  The sequence of parameter estimates used to construct the forecasts are estimated 

recursively by OLS.  We denote the estimated τ-step ahead forecast errors as 1,t+û τ  = '
t+ 1,t 1,t

ˆy -x βτ  

and 2,t+û τ  = '
t+ 2,t 2,t

ˆy -x βτ .  These functions, when evaluated at the population parameters, are 

denoted u1,t+τ = ' *
t+ 1,t 1y -xτ β  and u2,t+τ = ' *

t+ 2,t 2y -xτ β .  Note that in our notation, under the null 

hypothesis of either equal forecast accuracy or forecast encompassing, model 1 is nested within 
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model 2 and hence u1,t+τ = u2,t+τ. 

 In each of the models, the dependent variable yt+τ is the τ-step difference in the log-exchange 

rate series st.  Hence yt+τ = st+τ − st.  To clarify our definitions of x1,t and x2,t suppose we are 

comparing the forecast accuracy of the random walk with drift model of exchange rates with the 

monetary model as considered in Kilian (1999).  In this case x1,t = 1 and x2,t = (1, zt)′ for zt = st − 

( *
t tm -m ) + ( *

t ty -y ) where *
t tm -m  denotes the logarithm of the ratio of the US money supply to 

the foreign money supply and *
t ty -y  is the logarithm of the ratio of US to foreign real income.3 

 
Test Statistics 

 Because these test statistics are discussed in detail elsewhere, here we only present a brief 

overview.  The first two statistics are used to test for equal MSE.  Let t+τd̂  = 2
1,t+τû  − 2

2,t+τû , d  = 

-1 T-τ
t=R t+τ

ˆ(P-τ+1) d∑  = MSE1 − MSE2, ddΓ̂ (j)  = -1 T-τ
t=R+j t+τ t+τ-j

ˆ ˆ(P-τ+1) d d∑  for j ≥ 0 and ddΓ̂ (j)  = 

ddΓ̂ (-j) .  If we estimate the long-run covariance of dt+τ using a kernel-based estimator with kernel 

function K(.), bandwidth parameter M and maximum number of lags j  so that ddŜ  = 

j
ddj=-j

ˆK(j/M)Γ (j)∑  the test statistics take the form  

  MSE-t = 1/2

dd

d(P-τ+1)
Ŝ

                (1) 

  MSE-F = 
2

d(P-τ+1)
MSE

                (2) 

Under the null that the mean square error associated with model 1 is the same as that for model 

2, the expected difference between 2
1,t+τu  and 2

2,t+τu  is zero.  Under the alternative the mean 

square error associated with model 2 will be smaller than that for model 1.  Hence when 

constructing tests of equal forecast accuracy using either of these statistics we use critical values 
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chosen from the upper tail of the null limiting distribution.  Since the limiting distributions of 

these two statistics are non-standard and depend upon unknown nuisance parameters, we rely on 

the results in Clark and McCracken (2003a) to motivate our use of a bootstrap similar to that in 

Kilian (1999) to estimate asymptotically valid critical values and corresponding p-values. 

 The remaining three statistics are used to test for forecast encompassing.  The first two of 

these are motivated by a t-type statistic used by Harvey, Leybourne, and Newbold (1998) to test 

for forecast encompassing between two non-nested models.  Let tĉ +τ  = 1,t+τ 1,t+τ 2,t+τˆ ˆ ˆu (u -u ) , c  = 

-1 T-τ
t=R t+τˆ(P-τ+1) c∑ , cc

ˆ ( j)Γ  = -1 T-τ
t=R+j t+τ t+τ-jˆ ˆ(P-τ+1) c c∑  for j ≥ 0 and ccΓ̂ (j)  = ccΓ̂ (-j) .  If we estimate 

the long-run covariance of ct+τ using a kernel-based estimator with kernel function K(.), 

bandwidth parameter M and maximum number of lags j  so that ccŜ  = j
ccj=-j

ˆK(j/M)Γ (j)∑  the test 

statistics take the form 

  ENC-t = 1/2

cc

c(P-τ+1)
Ŝ

                (3) 

  ENC-F = 
2

c(P-τ+1)
MSE

                (4) 

Under the null that the forecast from model 1 encompasses that of model 2, the covariance 

between u1,t+τ and u1,t+τ − u2,t+τ will be less than or equal to zero.  Under the alternative that 

model 2 contains added information, the covariance should be positive.  Hence when 

constructing tests of forecast encompassing using either of these statistics we use critical values 

chosen from the upper tail of the null limiting distribution.  Since the limiting distributions of 

these two statistics are non-standard and depend upon unknown nuisance parameters, we 

continue to use a bootstrap procedure to estimate asymptotically valid critical values and 

corresponding p-values. 
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 The final encompassing test we consider was developed by Chao, Corradi and Swanson 

(2001).  This statistic is closely related to one used by Chong and Hendry (1986) to test for 

forecast encompassing between two non-nested models.  Let tĥ +τ  = 1,t 1,tû x+τ , tb̂ +τ  = 1,t 22,tû x+τ , b  

= -1 T-τ
t=R t+τ

ˆ(P-τ+1) b∑ , F̂  = -1 'T-τ
t=R 22,t 1,t-(P-τ+1) x x∑  and B̂  = -1 ' -1T-τ

t=R 1,t 1,t((P-τ+1) x x )∑ .  Let bb
ˆ ( j)Γ  = 

-1 T-τ
t=R+j t+τ t+τ-j

ˆ ˆ(P-τ+1) b b∑ , hh
ˆ ( j)Γ  = -1 T-τ

t=R+j t+τ t+τ-j
ˆ ˆ(P-τ+1) h h′∑  and bh

ˆ ( j)Γ  = -1 T-τ
t=R+j t+τ t+τ-j

ˆ ˆ(P-τ+1) b h′∑  for 

j ≥ 0 with bbΓ̂ (j)  = bbΓ̂ (-j) , hhΓ̂ (j)  = hhΓ̂ (-j)  and bhΓ̂ (j)  = bhΓ̂ (-j) .  If we estimate the long-run 

covariance of ( '
t+τb , '

t+τh )′ using a kernel-based estimator with kernel function K(.), bandwidth 

parameter M and maximum number of lags j  so that bbŜ  = j
bbj=-j

ˆK(j/M)Γ (j)∑ , hhŜ  = 

j
hhj=-j

ˆK(j/M)Γ (j)∑  and bhŜ  = j
bhj=-j

ˆK(j/M)Γ (j)∑  the test statistic takes the form  

  CCS = ' -1ˆ(P-τ+1)bΩ b                  (5) 
 
where Ω̂  = ' ' ' ' '

bb bh bh bh bb hh
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆS (FBS S B F ) FBS B F+ λ + + λ , π̂  = (P−τ+1)/R, bhλ̂  = 1ˆ ˆ1 ln(1 )−− π + π  and 

hhλ̂  = 1ˆ ˆ2[1 ln(1 )]−− π + π .  Under the null that forecasts from model 1 encompass those of model 

2, the covariance between u1,t+τ and x22,t will be zero.  Under the alternative that model 2 contains 

added information, the covariance should be non-zero.  Since the null limiting distribution of the 

statistic is χ2(k2) we choose critical values and construct p-values using the appropriate tables.  

 

Inference 

 Since we are using multiple test statistics for each exchange rate, forecast horizon and 

structural model it is not surprising that in Section four we find numerous instances in which the 

p-values are less than 10%.  To improve the reliability of our inference for each of the tests, we 

do not reject a particular null hypothesis simply because it’s associated p-value happens to be 
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below a pre-chosen threshold, α, such as 10%.  Instead we make a decision to reject the null for 

a particular test based upon its’ corresponding p- and q-value respectively.  Although the use of 

q-values is increasingly common in the statistics literature, and in particular those applications 

related to genetics where literally thousands of genes are being tested for some feature (e.g. 

Storey and Tibshirani (2003)), q-values are relatively unknown in the economics literature and 

hence we provide a brief description below.4 

 Consider an experiment in which m distinct tests are being conducted.  Among these suppose 

that m0 and m1 (m = m0 + m1) denote the number of instances in which the null and alternative 

are true respectively.  If we let S denote the number of rejections and F and T denote the number 

of false and true rejections we obtain the following table. 

 Reject Fail to reject Total 
Null True F m0 − F m0 
Alternative True T m1 − T m1 
Total S m − S m 

 
In the standard situation where only a single test is being performed (m = 1) one selects a 

rejection rule that maximizes the power of the test, E(T/m1) = Pr(T = 1), when m1 = 1 but 

controls the false positive rate or probability of a type I error, E(F/m0) = Pr(F = 1), below some 

threshold α when m0 = 1.  In this environment, we reject the null hypothesis when the p-value 

associated with a test statistic is less than or equal to α and fail to reject otherwise. 

 In a multiple testing environment (i.e. m ≥ 2) it is less clear how one should conduct 

inference and, in particular, decide which of the m hypotheses correspond to the null or 

alternative hypotheses.  One naïve method consists of simply applying the approach designed for 

the single test case to each of the individual hypotheses without any regard to the existence of the 

other tests.  However, if we do so we no longer ensure that the false positive rate E(F/m0) is less 
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than α but instead only ensure that E(F/m) ≤ α.  This bound is extremely forgiving and can lead 

to too many false rejections of the null.  

 The Bonferroni correction gets around this problem by changing the rejection rule.  When 

using the Bonferroni correction we reject the null for any particular test only if the corresponding 

p-value is less than or equal to α/m.  This ensures that the false positive rate remains below our 

threshold, E(F/m0) ≤ α, but does so at the expense of power.  Despite the loss in power for a 

particular test, in applications where m0 is large relative to m1 or when a false rejection of the 

null is costly, the Bonferroni correction may be useful. 

 However, in applications like ours where, a priori, economic theory (Frenkel (1976), Mussa 

(1976) and Bilson (1978)) and the power of the test statistics (Clark and McCracken (2003b)) 

leads us to expect T ≥ 1, controlling the false discovery rate, E(F/S), rather than the false positive 

rate, E(F/m0), may be a more appealing intermediate alternative to either the liberal naïve 

approach or conservative Bonferroni correction.  This approach, proposed by Benjamini and 

Hochberg (1995), is designed for situations where we are more interested in ensuring that our 

rejections are legitimate (e.g. F/S is small) than in guarding against one or more false positives 

(e.g. F/m0 is small).  As a result their method is likely to have better power than the Bonferroni 

correction and is likely to have fewer false positives than the naïve approach. 

 Building upon the concept of controlling the false discovery rate, Storey (2003) defines a test 

statistic, the q-value, as the minimum possible false discovery rate for which we reject the null 

just as we define a test’s p-value as the minimum possible false positive rate for which we will 

reject the null.  Both of these values, along with a given threshold for determining significance, 

permit us to describe the confidence we have in our statistical inference in several dimensions 

using our 2×2 table above.  For example, when a p-value is less than (greater than) a prespecified 
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level α we categorize it as contributing to the first (second) column and hence is an element of S 

(m – S).  In contrast, when a q-value is less than (greater than) a prespecified level α we 

categorize it as contributing to the second (first) row and hence is an element of m1 (m0). 

 Methods for constructing q-values and their properties are discussed in Storey (2002) as well 

as Storey, Taylor and Siegmund (2003). Intuitively the algorithm for calculating the q-value 

compares the distribution of the observed p-values from the series of tests to what one would 

have expected if the null were true in all cases. This requires calculating the percentage of cases 

we would expect to be consistent with the null, π0(α) = m0/m, for each level of significance, α. 

As the level of significance decreases (e.g. as α goes from 0.01 to 0.99), the only cases for which 

we can not reject the null will be when the null is, in fact, true.  Consequently, our estimate for 

π0(1) is the most conservative estimate we have for m0/m.  The q-value uses this conservative 

estimate to determine the probability with which we will falsely reject the null hypothesis for a 

given p-value. Formally the q-values can be constructed using the following algorithm: 

1.  Let p(1) ≤ p(2) ≤ …  ≤ p(m) be the ordered p-values from the m tests of interest. 

2.  For λ ∈ [0.01, 0.99] estimate π0 = m0/m using ( ) ( )
j

0

#( p )
ˆ

m 1
> λ

π λ =
−λ

. 

3.  Fit a cubic spline f*(.) of 0ˆ ( )π λ  on λ. 

4.  Set 0π̂  = f*(1). 

5.  Calculate 
( m)

0
(m) 0 (m)t p

j

ˆ m tˆ ˆq(p ) min p
#( p t)≥

π ⋅
= = π ⋅

≤
. 

6.  For i = m-1, m-2,…, 1 calculate 
(i )

0 (i)0
(i) (i 1)t p

j

ˆ m pˆ m tˆ ˆq(p ) min min ,q(p )
#( p t) i +≥

 π ⋅π ⋅
= =   ≤  

. 

7.  The estimated q-value for the ith most significant test is (i)q̂(p ) . 
 

 In our study we provide both the p- and q-values for each of the 400 test statistics we 

construct.  Construction of the asymptotically valid p-values is discussed below. Given those p-
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values we implement the publicly available software QVALUE to construct the asymptotically 

valid q-values associated with each of the 400 statistics.  A detailed discussion of the software 

can be found at http://faculty.washington.edu/~jstorey/qvalue/.  

Before proceeding to our empirical work we should be clear about the assumptions that we 

are relying upon to construct the q-values. The primary assumptions are (1) the p-values are 

asymptotically valid, (2) the p-values satisfy certain weak dependence conditions and (3) m is 

large. That the p-values are asymptotically valid follows from the fact that that we use a 

bootstrap to account for the non-standard asymptotic distributions implied by the nested model 

comparisons. That we satisfy the relevant dependence conditions or that m is ‘large’ is less clear. 

Nevertheless it is reasonably well-established that smaller sample sizes and stronger dependence 

imply increasingly conservative (i.e. larger) estimates of the q-values.  Formal discussions can be 

found in Storey, Taylor and Siegmund (2003), especially Theorem 7 and the corresponding 

numerical simulations.  Furthermore, studies such as Storey and Tibshirani (2001) and Storey 

(2002) demonstrate the robustness of the q-value to sample sizes (m) varying from 500 to 10,000 

using different degrees of dependence across the test statistics.   

 
3. Empirical Methods 

 To facilitate the comparison between our study and the existing literature, we use models, 

data and forecasting procedures similar to those used in some of the most widely cited studies.  

By doing so we also aim to isolate the contribution that the new test statistics can make in 

detecting predictive ability. 

 As is standard in much of the literature, the models that we consider define the current value 

of foreign exchange in terms of fundamental macroeconomic factors.5  The individual models we 

consider are all special cases of the following model 
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  st+τ − st = *
0β  + *

1β zt + ut+τ                (6) 

   zt = st − ft 

   ft = α1( *
t tm -m ) + α2( *

t ty -y ) + α3( *
t tr -r ) + α4( *

t t-π π ) + α5TBt + α6
*
tTB  

where st is the logarithm of the current US dollar – foreign currency exchange rate, ( *
t tm -m ) is 

the difference in the logarithms of the US money supply and the foreign money supply, ( *
t ty -y ) 

is the difference in the logarithms of the US and foreign real income, ( *
t tr -r ) is the short-term 

interest rate differential and ( *
t t-π π ) is the expected long-run inflation differential while TBt and 

*
tTB  represent the net US and foreign trade balances respectively. 

 Our models are largely drawn from those used in Meese and Rogoff (1983a, b).  The specific 

models we consider are the monetary model, the flexible price monetary model (Frenkel-Bilson), 

the sticky-price monetary model (Dornbusch-Frankel) and the sticky-price asset model (Hooper-

Morton).  Each of these models can be represented using (6) by making different assumptions on 

the coefficients.  For the monetary model (model 1), we follow Mark (1995) and Kilian (1999) 

by setting α1 = 1 and α2 = –1.  For the other models we use commonly assumed values6: for the 

flexible-price monetary model (model 2) α1 = 1, α2 = –1, and α3 = –1, for the sticky-price 

monetary model (model 3) α1 = 0, α2 = –1, α3 = –1, and α4 = 1 and for the sticky-price asset 

model (model 4) α1 = 1, α2 = –1, α3 = –0.5, α4 = 3, α5 = 0.001 and α6 = –0.001.7 

 The data was chosen to conform to the structural models and to be consistent with the data 

used in previous studies.  For the monetary model we start with the data used in Kilian (1999).  It 

was constructed using the OECD Main Economic Indicators available from DataStream for the 

period from 1973:Q1 to 1997:Q4.  It includes the US dollar exchange rates of the Canadian 

dollar, the German mark, the Japanese yen and the Swiss franc as well as the necessary 

fundamentals.  These include the GNP and the money supply (M1) for each country.  For 
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Switzerland we use GDP rather than GNP and for Canada we use M3 rather than M1 for the 

money supply due to data availability.  These data are supplemented to include the data required 

for the estimation of the other structural models.  These include the Treasury bill rates (the short-

term interest rates in each country), the CPI for the inflation and trade balances in each country 

all from DataStream.  We deseasonalize this data in a manner similar to Mark (1995) by using a 

rolling aggregation of the data over the past year. 

 With the fundamentals defined above, for any fixed model i = 1, 2, 3, 4 and horizon τ = 1, 2, 

4, 8, 12 we construct our forecasts using the linear regression models  

  st+τ – st = *
0,2β  + *

1,2β zt + u2,t+τ = ' *
2,t 2x β  + u2,t+τ          (7) 

  st+τ – st = *
0,1β  + u1,t+τ = ' *

1,t 1x β  + u1,t+τ             (8) 

where x1,t = 1 and x2,t = (1, zt)′.8  To evaluate predictive ability we estimate (7) and (8) by OLS 

P−τ+1 times once each using observations j = 1,…,t for t = R,…,T−τ.  For each t we then 

construct two τ-step ahead forecasts, '
1,t 1,t

ˆx β  and '
2,t 2,t

ˆx β , with corresponding forecast errors 1,tû +τ  

= '
t+τ 1,t 1,t

ˆy -x β  and 2,tû +τ  = '
t+τ 2,t 2,t

ˆy -x β .  Given the subsequent two sequences of forecast errors we 

construct each of the test statistics in equations (1) − (5). 

 For each model, horizon and exchange rate we follow the detailed steps given below. 

1) Transform the data as in Mark (1995) and Kilian (1999) for each of the models.  The resulting 

values are multiplied by 400 to convert the relevant series to annualized percentage points. 

2) Models (7) −(8) are initially estimated over the in-sample period 1973:Q1 − 1989:Q4.9 

3) Models (7) − (8) are estimated recursively over the out-of-sample period 1990:Q1 − 1997:Q4. 

4) The test statistics are calculated using (1) − (5). The long-run covariances in (1), (3) and (5) 

are calculated using the Newey and West (1987) estimator with a lag length of (the integer 

component of) 1.5τ.10 
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5) The p-values for the CCS statistic are calculated using the upper tail of the chi-square(1) 

distribution.  The p-values associated with the MSE-t, MSE-F, ENC-t and ENC-F statistics are 

estimated using a bootstrap similar to that discussed in Kilian (1999).  The algorithm consists of: 

a) Estimate the DGP for the exchange rate and the expected exchange rates as: 

  st – st-1 = d + υt 

  ft – ft-1 = a + bzt-1 + p 1
j 1 j t jζ ∆s−
= −∑  + p 1

j 1 j t jγ ∆f−
= −∑  + εt. 

The number of lags, p, is determined using AIC. 

b) Take the resulting residuals and sample them with replacement to obtain a set of 

bootstrap residuals, *
tυ  and *

tε . 

c) Create a bootstrap series of the changes in log exchange rates, st, and changes in 

market fundamentals, ft, recursively using these residuals and the estimated coefficients.  

To initialize the process set zt* = 0 and ∆st-j* = ∆ft-j* = 0 for j = p-1,…,1 and discard the 

first 500 transients.  Based on these values we calculate the bootstrap series *
ts  and *

tf  the 

same length as the original data series. 

d) Repeat steps 2 − 4 for the bootstrap sample. 

e) Repeat steps a) − d) until we have the required number of bootstrapped test statistics. 

f) Use the bootstrapped test statistics to obtain an empirical distribution to calculate the p-

values for the test statistics from the true data. 

6) Given the p-values from step 5), we estimate the corresponding q-values using the program 

QVALUE discussed in Section two. 
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4. Empirical Results 

 Before discussing our results using the new test statistics, we briefly summarize the results 

for the monetary model from Kilian (1999).  Kilian (1999) repeated the analysis of Mark (1995) 

and found that increasing the forecasting horizon and sample size did not significantly increase 

the predictive power of the models as originally hypothesized by Mark (1995).  In fact, using 

tests based on the MSE-t statistic Kilian (1999) found only minor evidence of exchange rate 

predictability over the period from 1973 to 1997.  Specifically, for Canada and Switzerland he 

found some evidence of predictive ability at the shorter forecasting horizons.  However, for 

Germany and Japan the evidence of predictive ability was weaker.  The only significant 

predictive power was for the Japanese yen for one period ahead (one quarter).  To determine the 

value of our test statistics, we repeat the analysis performed by Kilian (1999) extending it to 

include our expanded set of models and our diverse set of test statistics. 

 
Baseline Results 

 Table 1 provides the root mean square errors (RMSE) associated with the random walk with 

drift model as well as the ratios (RMSERandom Walk/RMSEStructural Model).11  We immediately see that 

of the 80 RMSE ratios for the different structural models all but 13 of them are greater than 1 

though the indicated gains from using the structural models is frequently not large.  For example, 

the sticky-price monetary model (model 2) applied to Switzerland has ratios as low as 1.01 at the 

12-quarter horizon and as high as 1.34 at the 8-quarter horizon.  Even so, there are examples 

where the ratio is quite large and this is particularly acute for Canada.  For example, the 

monetary model (model 1) applied to Canada has ratios that rise from 1.01 at the 1-quarter 

horizon to as large as 3.57 at the 12-quarter horizon.  Of the 13 instances in which the ratio is 

less than or equal to 1, all occur at the longest two horizons.  In fact all of the ratios associated 
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with Germany at forecast horizons of 8 and 12 quarters and all of the ratios for Japan at the 12-

quarter forecast horizon are less than 1.  Note that since for any fixed horizon and exchange rate, 

these ratios are consistently greater (or consistently less) than one nearly all of our structural 

models are capturing similar movements in exchange rates.  For example, at the 2-quarter 

horizon the ratios for Japan take the values 1.07, 1.08, 1.08 and 1.07 across models 1 − 4. 

 The RMSE ratios provide some insight into what we should expect in the subsequent analysis.  

In general the ratios indicate that, with the exception of Canada, the structural models have 

slightly more predictive power than the random walk with drift at shorter horizons but not at 

longer horizons.  For Canada the ratios suggests the structural models have significant predictive 

power at long horizons.  These results are broadly consistent with the findings of Kilian (1999) 

but suggest that more powerful tests of forecast accuracy may be able to detect predictive ability 

for our structural models, especially at short horizons. 

 In Tables 2 − 6 we report the p- and q-values for the five out-of-sample tests of predictive 

ability for each model, currency and forecast horizons.  The tables are for the MSE-t, MSE-F, 

ENC-t, ENC-F and CCS statistics respectively.  Before discussing each of these in detail it is 

instructive to consider Figure 1.  Here we provide a histogram, consisting of 40 equally spaced 

bins, of all 400 of the p-values from the corresponding tests.  The plot is interesting because it 

gives a feel for whether or not a portion of the tests indicate that the structural models have 

predictive ability beyond that of the random walk with drift model.  If the null hypothesis of no 

predictive ability was satisfied for all 400 tests we would expect the distribution of p-values to be 

approximately uniform with roughly 10 p-values in each bin.  If, on the other hand, a proportion 

of the hypotheses were alternative we would expect a distribution that was a mixture of a 

uniform and a spike near zero. 
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 The plot in Figure 1 is distinctly not uniform.  Intuitively this can be seen by the fact that 

there are far too few p-values greater than 50% and far too many p-values less than 20%.  

Despite the intuitive appeal of the plot, it is far more difficult to prescribe a well defined and well 

behaved decision rule for determining which p-values correspond to alternative hypotheses.  

Figure 2 provides insight into some of the characteristics of the q-values and how they relate to 

the p-values.  The first figure demonstrates how the number of tests demonstrating significant 

predictive ability increases as we allow more false positives (i.e. we allow a higher q-value).  

Notice that for estimated q-values greater than 0.04 the number of significant tests increases 

dramatically.  However, the second figure suggests that the number of false positives among this 

group remains low. 

 Before discussing the individual Tables it is useful to make a few general observations 

regarding the p- and q-values and how they can be used to interpret the results.  Building on the 

notation we introduced earlier, of the m = 400 tests we have 154 cases where the p-values are 

less than 10% (S10% = 154) while 94 have p-values less than 5% (S5% = 94).  Similarly, of the 

400 tests 338 have q-values less than 10% while 210 have q-values less than 5%.  Each of the 

154 (94) statistics with p-values less than 10% (5%) have q-values less than 4.9% (3.9%).  In 

other words, using a 10% (5%) p-value threshold for rejection implies at most a 4.9% (3.9%) q-

value threshold for rejection, or equivalently that at most 4.9% (3.9%) of the rejections are false.  

That the q-values are generally smaller than their corresponding p-values is an indication that S > 

m0 since the p- and q-values are measures of E(F/m0) and E(F/S) respectively. 

 Consequently, when we use 10% or 5% rejection thresholds for the p-values the 

corresponding q-values indicate that we expect at most E(F10%/S10%) = 4.9% or E(F5%/S5%) = 

3.9% of the rejections correspond to false discoveries.  Since the implied expected number of 
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false positives (i.e. E(F10%) = 4.9%·154 ≅ 8 and E(F5%) = 3.9%·94 ≅ 4; see the lower panel of 

Figure 2 for more detail) under the family-wise null is much smaller than the number of 

rejections indicated by 10% and 5% p-value rejection thresholds, and since the expected number 

of false discoveries is fairly small as a proportion of those rejections (4.9% − 3.9%) we use both 

10% and 5% p-value rejection thresholds as rules for detecting predictive ability in the structural 

models − despite the existence of multiple testing. 

 

Tests of Equal Forecast Accuracy 

 Table 2 presents the results for the significance of the MSE-t statistics.  These statistics 

provide evidence of short-, medium- and long-horizon predictability.  For example, model 1 

provides evidence of 1- and 2-quarter predictability for the Swiss franc with both p- and q-values 

less than 5%.  At the 4-quarter horizon the corresponding p-value is less than 10% and has a q-

value less than 5%.  For the German mark there is evidence of predictability at the 1- and 2-

quarter horizons and for the Japanese yen at most horizons.  This pattern holds consistently 

across all models.  The evidence of predictability using this test statistic is very weak for the 

Canadian dollar.  This seems somewhat surprising since among all of the RMSE ratios in Table 1, 

the largest values are obtained at the 12-quarter horizon for Canada and many of the values at 

this and other forecast horizons are statistically significant. 

 Table 3 presents the results for the significance of the MSE-F test statistic.  If we compare 

Tables 2 and 3, in all of the cases in which the MSE-t has a p-value less than 10%, the MSE-F 

statistic does so as well.  The same holds for p-values of less than 5%.  In some cases however, 

the MSE-F has a p-value less than 5% or 10% when the MSE-t does not.  Recall that we 

motivated the use of the MSE-F statistic by arguing that it has greater power than the standard 
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MSE-t statistic.  Our empirical findings are consistent with this.  There are 10 (11) instances in 

which the MSE-F has a p-value less than 10% (5%) but the MSE-t does not.  In most other cases, 

we also find the p-values are much lower for the MSE-F statistics than for the MSE-t statistics.  

Of particular interest are the 12-quarter forecasts for Canada where the p-values for the MSE-t 

are around 77% but they are only slightly over our 10% cut-off for the MSE-F statistics. 

 In light of the superior power of the MSE-F statistic, it is not surprising that the MSE-F 

indicates increased predictive ability for each model and most currencies.  In particular there is 

stronger evidence of predictive ability at the 4-quarter horizon.  For each of the German mark, 

Swiss franc and Canadian dollar we now find predictive ability at the 4-quarter horizon across all 

models.  There are no significant changes in predictive ability for the Japanese yen. 

 
Tests of Forecast Encompassing 

 Moving to the tests of encompassing, Table 4 presents the evidence of predictability 

associated with the ENC-t statistic.  The evidence of predictive ability here is closely related to 

what we found using the MSE-t statistic in Table 2.  The main difference is that we find slightly 

fewer significant results.  The largest difference between Tables 2 and 4 occurs for the Japanese 

yen.  The MSE-t statistic indicates predictive ability across a wide variety of horizons while the 

ENC-t statistic would only indicate predictive ability for the 1- and 2- quarter horizons.  Again, 

the MSE-F statistic signals significantly more predictive ability than does the ENC-t statistic and 

as was the case for the MSE-t statistic, this is particularly true for the Canadian dollar. 

 Table 5 presents the evidence of predictive ability associated with the ENC-F test statistic.  If 

we compare Tables 4 and 5, in all but two instances when the ENC-t rejects the null at the 10% 

level, the ENC-F continues to do so.  In both of the cases for which this did not occur, the ENC-

F would have been significant at the 11% level or better.  In some cases however, the ENC-F 
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rejects the null when the ENC-t does not.  There are 20 (8) instances in which the ENC-F has a 

p-value less than 10% (5%) but the ENC-t does not. 

 As was the case for the MSE-F test, we observe a sharp increase in the predictive ability 

signaled by the ENC-F statistic relative to its’ t-type companion.  For example whereas the ENC-

t statistic did not indicate any predictability of the Canadian dollar, we now observe evidence of 

predictability at a wide variety of horizons across all models.  It is also interesting to reconsider 

the Canadian dollar at the 12-quarter forecast horizon but this time noting the difference in the p-

values for the ENC-t and ENC-F statistics rather than the MSE statistics.  For the ENC-t statistic 

the p-values are over 90% but they are just slightly over 10% for the ENC-F statistic.  Similarly, 

recall that the ENC-t statistic indicated only 1- and 2-quarter predictive ability of the German 

mark, Japanese yen and Swiss franc.  The ENC-F statistic now provides evidence of 1-, 2- and 4-

quarter predictability across most models for each of these currencies. 

 The final test of forecasting encompassing we use is that of Chao, Corradi and Swanson 

(2001).  In Table 6 we see that this test indicates less predictive ability for our models than did 

our earlier tests.  At the 5% level we find evidence of predictive ability at the 12-quarter horizon 

for the Canadian dollar and Swiss franc.  Since few of the other tests indicate predictive ability 

for the Canadian dollar despite the large RMSE ratios, it may be that this test has significantly 

better power in particular directions relative to the other tests (see Corradi and Swanson (2002) 

for a related discussion).  We find a large number of CCS-statistics with p-values between 10% 

and 15%.  Even though not statistically significant, this suggests some predictive ability for the 

forecasts at the 8-quarter horizon for both the Canadian dollar and Swiss Franc and at the 1- and 

2-quarter horizons for the Japanese yen.  Consequently this test provides a valuable new 

perspective on the predictive ability of our models. 
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5. Conclusion 

 Our analysis suggests that detecting predictability in exchange rates using long-horizon 

regressions can be strongly influenced by the choice of test statistic and the manner in which it is 

employed.  In particular we find clear empirical evidence that the standard t-type test of equal 

forecast accuracy that is used in Meese and Rogoff (1988), Mark (1995) and Kilian (1999) and 

Cheung, Chinn and Pascual (2002) indicates significantly less predictability than its’ F-type 

equivalent.  A comparable relationship is established between t- and F-type tests of forecast 

encompassing.  Although analytical and Monte Carlo evidence of such relationships are 

established in Clark and McCracken (2001, 2003a, b) it is clearly more important that such a 

relationship is established empirically.  It is therefore comforting to find that these conclusions 

seem to hold irrespective of the particular currency or model being considered. 

 Our results yield several implications for researchers dealing with financial time series.  For 

those in International Finance it adds further evidence that structural exchange rate models do 

exhibit an ability to predict exchange rates.  Similar to other studies our evidence is consistent 

with there being more short-term predictability in exchange rates and our results are relatively 

insensitive to the choice of model.  More generally it suggests that these new, more powerful, 

test statistics may be useful for ascertaining whether a particular financial variable with putative 

predictive content indeed can be used to improve forecast accuracy. 
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Table 1: Sample Forecasting Results 
 
 

  Random Walk Model 1 Model 2 Model 3 Model 4 
       
  RMSE Ratio 
Germany 1 24.50 1.02 1.02 1.02 1.02 

 2 34.38 1.06 1.06 1.06 1.06 
 4 43.66 1.12 1.13 1.12 1.12 
 8 53.56 0.89 0.91 0.89 0.89 
 12 41.37 0.53 0.55 0.53 0.53 
       

Canada 1 7.95 1.01 1.01 1.01 1.01 
 2 10.77 1.02 1.03 1.03 1.03 
 4 15.85 1.13 1.14 1.14 1.14 
 8 26.19 1.76 1.78 1.76 1.75 
 12 34.61 3.57 3.60 3.50 3.41 
       

Japan 1 25.66 1.04 1.04 1.04 1.04 
 2 35.93 1.07 1.08 1.08 1.07 
 4 45.85 1.09 1.10 1.09 1.09 
 8 76.02 1.09 1.12 1.11 1.11 
 12 83.33 0.93 0.95 0.94 0.94 
       

Switzerland 1 27.32 1.05 1.05 1.05 1.05 
 2 38.71 1.10 1.10 1.10 1.10 
 4 49.40 1.23 1.22 1.24 1.23 
 8 63.30 1.39 1.34 1.38 1.37 
 12 51.85 1.07 1.01 1.03 1.00 

 
Notes: (a) Values are the Root Mean Squared Error (RMSE) for the random walk with drift and its’ ratio 
with the RMSE for each of the structural models.  A value greater than one favors the structural model.  
(b) Forecasts from the structural models use fundamentals based on parameter from previous studies such 
as Mark (1995), Kilian (1999) and Cheung, Chinn and Pascual (2002). 
(c) Initial model estimates use quarterly data over the period 1973 to 1989 while the out-of-sample 
forecasts are over the period 1990 to 1998. 
(d) Where models 1 to 4 are the monetary model, flexible price monetary model (Frenkel-Bilson), sticky 
price monetary model (Dornbusch-Frankel) and sticky-price asset model (Hooper-Morton), respectively. 
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Table 2: p- and q-values for the MSE-t statistic 
 
 

 τ Model 1 Model 2 Model 3 Model 4 
  p-value q-value p-value q-value p-value q-value p-value q-value 

Canada 1 0.1865 0.0588 0.1865 0.0588 0.1940 0.0606 0.1960 0.0609 
 2 0.2625 0.0744 0.2695 0.0749 0.2610 0.0744 0.2750 0.0751 
 4 0.2255 0.0679 0.2190 0.0662 0.2140 0.0653 0.2080 0.0642 
 8 0.3505 0.0840 0.3480 0.0838 0.3515 0.0840 0.3630 0.0862 
 12 0.7770 0.1539 0.7635 0.1524 0.7760 0.1539 0.7740 0.1539 
          

Germany 1 0.0455 0.0388 0.0390 0.0388 0.0400 0.0388 0.0450 0.0388 
 2 0.0690 0.0426 0.0580 0.0388 0.0570 0.0388 0.0600 0.0393 
 4 0.1495 0.0514 0.1405 0.0501 0.1515 0.0514 0.1520 0.0514 
 8 0.2670 0.0747 0.2385 0.0707 0.2755 0.0751 0.2790 0.0758 
 12 0.4850 0.1034 0.4930 0.1045 0.4965 0.1048 0.5050 0.1053 
          

Japan 1 0.0085 0.0388 0.0085 0.0388 0.0065 0.0388 0.0070 0.0388 
 2 0.0520 0.0388 0.0450 0.0388 0.0415 0.0388 0.0330 0.0388 
 4 0.2095 0.0644 0.1875 0.0588 0.1855 0.0588 0.1965 0.0609 
 8 0.0355 0.0388 0.0330 0.0388 0.0505 0.0388 0.0410 0.0388 
 12 0.0355 0.0388 0.0320 0.0388 0.0395 0.0388 0.0345 0.0388 
          

Switzerland 1 0.0035 0.0335 0.0095 0.0388 0.0035 0.0335 0.0065 0.0388 
 2 0.0145 0.0388 0.0190 0.0388 0.0135 0.0388 0.0210 0.0388 
 4 0.0780 0.0444 0.1090 0.0483 0.0735 0.0431 0.0860 0.0453 
 8 0.1585 0.0526 0.1570 0.0525 0.1575 0.0525 0.1475 0.0509 
 12 0.4720 0.1022 0.5010 0.1049 0.4745 0.1022 0.4655 0.1019 

 
 
Notes: (a) Values are the p- and q-values associated with tests of predictive ability using the MSE-t 
statistic.  The p-values are calculated using a bootstrap based on Kilian (1999) while the q-values are 
calculated using an algorithm due to Storey (2003).  Whereas the p-value provides a measure of the rate at 
which null hypotheses are rejected, the q-value provides a measure of the rate at which rejected 
hypotheses satisfy the null hypothesis. 
(b) See notes (b) to (d) from Table 1. 



 31

Table 3: p- and q-values for the MSE-F statistic 
 
 

 τ Model 1 Model 2 Model 3 Model 4 
  p-value q-value p-value q-value p-value q-value p-value q-value 

Canada 1 0.1095 0.0483 0.0950 0.0477 0.1085 0.0483 0.1050 0.0483 
 2 0.1290 0.0487 0.1275 0.0487 0.1225 0.0487 0.1290 0.0487 
 4 0.0560 0.0388 0.0350 0.0388 0.0505 0.0388 0.0405 0.0388 
 8 0.1350 0.0487 0.1295 0.0487 0.1470 0.0509 0.1435 0.0509 
 12 0.1025 0.0483 0.1065 0.0483 0.1215 0.0487 0.1325 0.0487 
          

Germany 1 0.0500 0.0388 0.0465 0.0388 0.0475 0.0388 0.0490 0.0388 
 2 0.0630 0.0405 0.0485 0.0388 0.0560 0.0388 0.0565 0.0388 
 4 0.0895 0.0461 0.0830 0.0451 0.0840 0.0451 0.0980 0.0483 
 8 0.2990 0.0776 0.2730 0.0750 0.2985 0.0776 0.3085 0.0797 
 12 0.5200 0.1069 0.5105 0.1059 0.5160 0.1064 0.5365 0.1094 
          

Japan 1 0.0140 0.0388 0.0130 0.0388 0.0125 0.0388 0.0185 0.0388 
 2 0.0415 0.0388 0.0375 0.0388 0.0355 0.0388 0.0340 0.0388 
 4 0.1200 0.0487 0.1080 0.0483 0.1060 0.0483 0.1205 0.0487 
 8 0.0310 0.0388 0.0285 0.0388 0.0405 0.0388 0.0370 0.0388 
 12 0.0395 0.0388 0.0340 0.0388 0.0425 0.0388 0.0390 0.0388 
          

Switzerland 1 0.0210 0.0388 0.0220 0.0388 0.0215 0.0388 0.0175 0.0388 
 2 0.0220 0.0388 0.0225 0.0388 0.0275 0.0388 0.0220 0.0388 
 4 0.0255 0.0388 0.0280 0.0388 0.0225 0.0388 0.0230 0.0388 
 8 0.1310 0.0487 0.1325 0.0487 0.1295 0.0487 0.1230 0.0487 
 12 0.4740 0.1022 0.5010 0.1049 0.4735 0.1022 0.4640 0.1018 

 
 
Notes: (a) Values are the p- and q-values associated with tests of predictive ability using the MSE-F 
statistic.  The p-values are calculated using a bootstrap based on Kilian (1999) while the q-values are 
calculated using an algorithm due to Storey (2003).   
(b) See notes (b) to (d) from Table 1. 
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Table 4: p- and q-values for the ENC-t statistic 
 
 

 τ Model 1 Model 2 Model 3 Model 4 
  p-value q-value p-value q-value p-value q-value p-value q-value 

Canada 1 0.1130 0.0483 0.1070 0.0483 0.1195 0.0487 0.1200 0.0487 
 2 0.1675 0.0545 0.1825 0.0582 0.1680 0.0545 0.1795 0.0575 
 4 0.1595 0.0527 0.1520 0.0514 0.1525 0.0514 0.1530 0.0514 
 8 0.4745 0.1022 0.4720 0.1022 0.4490 0.1000 0.4450 0.0994 
 12 0.9200 0.1749 0.9160 0.1749 0.9125 0.1748 0.9190 0.1749 
          

Germany 1 0.0735 0.0431 0.0690 0.0426 0.0705 0.0426 0.0620 0.0402 
 2 0.0830 0.0451 0.0705 0.0426 0.0705 0.0426 0.0700 0.0426 
 4 0.1330 0.0487 0.1310 0.0487 0.1355 0.0487 0.1360 0.0487 
 8 0.3805 0.0895 0.3895 0.0908 0.3835 0.0897 0.3715 0.0877 
 12 0.4210 0.0966 0.4010 0.0930 0.4115 0.0947 0.4015 0.0930 
          

Japan 1 0.0410 0.0388 0.0265 0.0388 0.0425 0.0388 0.0365 0.0388 
 2 0.0990 0.0483 0.0890 0.0461 0.0935 0.0472 0.0850 0.0451 
 4 0.3200 0.0806 0.2940 0.0774 0.3250 0.0813 0.3170 0.0801 
 8 0.8870 0.1712 0.8820 0.1712 0.8770 0.1710 0.8840 0.1712 
 12 0.9775 0.1840 0.9735 0.1837 0.9720 0.1837 0.9660 0.1832 
          

Switzerland 1 0.0015 0.0205 0.0045 0.0339 0.0015 0.0205 0.0040 0.0335 
 2 0.0215 0.0388 0.0180 0.0388 0.0155 0.0388 0.0190 0.0388 
 4 0.1135 0.0483 0.1340 0.0487 0.1090 0.0483 0.1070 0.0483 
 8 0.3385 0.0829 0.3405 0.0829 0.3270 0.0815 0.2980 0.0776 
 12 0.3470 0.0838 0.3570 0.0850 0.3675 0.0870 0.4065 0.0939 

 
 
Notes: (a) Values are the p- and q-values associated with tests of predictive ability using the ENC-t 
statistic.  The p-values are calculated using a bootstrap based on Kilian (1999) while the q-values are 
calculated using an algorithm due to Storey (2003). 
(b) See notes (b) to (d) from Table 1. 
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Table 5: p- and q-values for the ENC-F statistic 
 
 

 τ Model 1 Model 2 Model 3 Model 4 
  p-value q-value p-value q-value p-value q-value p-value q-value 

Canada 1 0.0570 0.0388 0.0540 0.0388 0.0580 0.0388 0.0505 0.0388 
 2 0.0595 0.0393 0.0530 0.0388 0.0465 0.0388 0.0470 0.0388 
 4 0.0540 0.0388 0.0315 0.0388 0.0470 0.0388 0.0340 0.0388 
 8 0.1675 0.0545 0.1775 0.0572 0.1775 0.0572 0.1675 0.0545 
 12 0.1065 0.0483 0.1150 0.0486 0.1215 0.0487 0.1290 0.0487 
          

Germany 1 0.1040 0.0483 0.0965 0.0481 0.1000 0.0483 0.0930 0.0472 
 2 0.1005 0.0483 0.0780 0.0444 0.0845 0.0451 0.0835 0.0451 
 4 0.0925 0.0472 0.0725 0.0430 0.0805 0.0451 0.0870 0.0455 
 8 0.3240 0.0813 0.2870 0.0774 0.3160 0.0801 0.3150 0.0801 
 12 0.5140 0.1063 0.4785 0.1026 0.5065 0.1053 0.4965 0.1048 
          

Japan 1 0.0765 0.0443 0.0545 0.0388 0.0700 0.0426 0.0705 0.0426 
 2 0.0835 0.0451 0.0695 0.0426 0.0810 0.0451 0.0785 0.0444 
 4 0.1105 0.0483 0.1010 0.0483 0.1045 0.0483 0.1160 0.0487 
 8 0.5510 0.1110 0.5215 0.1070 0.5275 0.1079 0.5450 0.1106 
 12 0.9010 0.1730 0.8730 0.1707 0.8910 0.1715 0.8850 0.1712 
          

Switzerland 1 0.0465 0.0388 0.0430 0.0388 0.0450 0.0388 0.0430 0.0388 
 2 0.0480 0.0388 0.0540 0.0388 0.0575 0.0388 0.0560 0.0388 
 4 0.0510 0.0388 0.0475 0.0388 0.0465 0.0388 0.0420 0.0388 
 8 0.2610 0.0744 0.2595 0.0744 0.2510 0.0741 0.2350 0.0699 
 12 0.5530 0.1110 0.5545 0.1110 0.5530 0.1110 0.5385 0.1096 

 
 
Notes: (a) Values are the p- and q-values associated with tests of predictive ability using the ENC-F 
statistic.  The p-values are calculated using a bootstrap based on Kilian (1999) while the q-values are 
calculated using an algorithm due to Storey (2003). 
(b) see notes (b) to (d) from Table 1. 
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Table 6: p- and q-values for the CCS statistic 
 
 

 τ Model 1 Model 2 Model 3 Model 4 
  p-value q-value p-value q-value p-value q-value p-value q-value 

Canada 1 0.2945 0.0774 0.2943 0.0774 0.2943 0.0774 0.2940 0.0774 
 2 0.3125 0.0797 0.3123 0.0797 0.3123 0.0797 0.3120 0.0797 
 4 0.4295 0.0974 0.4292 0.0974 0.4290 0.0974 0.4289 0.0974 
 8 0.1136 0.0483 0.1135 0.0483 0.1134 0.0483 0.1133 0.0483 
 12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
          

Germany 1 0.3281 0.0815 0.3364 0.0829 0.3483 0.0838 0.3819 0.0895 
 2 0.2142 0.0653 0.2185 0.0662 0.2272 0.0682 0.2611 0.0744 
 4 0.4835 0.1034 0.4873 0.1036 0.4989 0.1049 0.5521 0.1110 
 8 0.7838 0.1545 0.7823 0.1545 0.7870 0.1547 0.8237 0.1615 
 12 0.2520 0.0741 0.2705 0.0749 0.2538 0.0744 0.2339 0.0699 
          

Japan 1 0.1345 0.0487 0.1323 0.0487 0.1314 0.0487 0.1327 0.0487 
 2 0.1473 0.0509 0.1457 0.0509 0.1450 0.0509 0.1465 0.0509 
 4 0.2949 0.0774 0.2906 0.0774 0.2916 0.0774 0.2940 0.0774 
 8 0.2727 0.0750 0.2645 0.0744 0.2649 0.0744 0.2682 0.0748 
 12 0.4617 0.1016 0.4593 0.1014 0.4579 0.1014 0.4580 0.1014 
          

Switzerland 1 0.4393 0.0984 0.4374 0.0984 0.4380 0.0984 0.4385 0.0984 
 2 0.3415 0.0829 0.3405 0.0829 0.3408 0.0829 0.3410 0.0829 
 4 0.2632 0.0744 0.2626 0.0744 0.2626 0.0744 0.2622 0.0744 
 8 0.1316 0.0487 0.1302 0.0487 0.1305 0.0487 0.1301 0.0487 
 12 0.0289 0.0388 0.0281 0.0388 0.0287 0.0388 0.0289 0.0388 

 
 
Notes: (a) Values are the p- and q-values associated with tests of predictive ability using the CCS statistic.  
The p-values are calculated using the upper tail of the chi-square(1) distribution while the q-values are 
calculated using an algorithm due to Storey (2003). 
(b) see notes (b) to (d) from Table 1. 
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Figure 1: Histogram of All p-values 
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Notes: (a) This chart provides a histogram of all 400 p-values generated from the permutations of 5 test 
statistics, 5 forecast horizons, 4 bilateral exchange rates and 4 models. 
(b) Bins are in increments of .025. 
(c) The number of p-values less than .05 and .10 are 94 and 154 respectively. 
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Figure 2: Plots of q-values by S and E(F) 
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Notes: (a) These charts describe the q-values corresponding to all 400 p-values generated from the 
permutations of 5 test statistics, 5 forecast horizons, 4 bilateral exchange rates and 4 models. 
(b) The figures are: a) the number of significant tests (tests in which we reject the null of no predictive 
ability) versus the respective q-value, and b) the expected number of false positives versus the number of 
significant tests. 

(0.049,154) 

(0.039, 94) 
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helpful comments.  All remaining errors are our own. 

1 Recent studies such as Cheung, Chinn and Pascual (2002) and Rossi (2002) concentrate on 

different characteristics of the problem and also raise concerns regarding the use of standard t-

type tests of predictive ability. 

2 For a detailed discussion of some of these and other related issues see Neely and Sarno (2002). 

3 Throughout, the notation ‘*’ signifies that the variable relates to the foreign country. 

4 This description is drawn largely from Storey and Tibshirani (2003). 

5 Details on these models can be found in Levich (1985), and Frankel and Rose (1995). 

6 These assumed values for the coefficients in the model are taken from studies such as Mark 

(1995), Kilian (1999) and Cheung, Chinn and Pascual (2002).  

7 We also performed this analysis with estimated coefficients, but the results were qualitatively 

similar.  Using preset values also facilitates comparison with much of the existing literature . 

8 This is estimated separately for each τ, but we suppress the dependence on τ for simplicity. 

9 We consider several other sample splits.  As in Faust, Rogers and Wright (2003), Cheung, 

Chinn and Pascual (2002) and many other studies, we found that the forecasting ability of the 

different models were impacted by the choice of sample period.  However, the relative 

performance of the different statistics remained consistent across our alternative sample periods.  

Consequently, we only present the results for the split similar to Kilian (1999). 

10 We also considered using 20 lags as in Kilian (1999) but obtained similar results. 

11 In unreported work, we construct tests of zero mean prediction error over the out-of-sample 

period.  For all models, horizons and exchange rates we fail to reject this null at the 10% level. 


