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Abstract

Background: Environmental concerns have promoted the rise of low emissions “green” power technologies such as
solar power. In part to make these technologies of economic interest to investors, many green energy policies have
been proposed, and a wide variety of green energy developments have been launched which take advantage of
these policies. This paper studies the impact of the unpredictable solar insolation on two variables of key interest to
solar plant developers: the repayment time and the cash flow at risk.

Results: Using a bootstrap analysis of solar irradiation time series, we model solar farms which sell their power output
at a Feed-In Tariff (FIT) rate motivated by one used in the province of Ontario, Canada. We show that the feed-in tariff
level which existed in Ontario in March 2012 was more than sufficient to remove the financial risks inherent in
financing a solar PV plant.

Conclusions: We conclude that the Ontario Canada FIT 2012 program was an effective tool to encourage
investment in solar PV plants. We also find that repayment time is strongly sensitive to FIT rates. So FIT is a very
efficient tool to impact/control the volume risk.

Keywords: Solar PV, Feed-In Tariff, Repayment time, Bootstrap

Background
The renewable energy market has seen rapid growth dur-
ing the past few years. According to the Renewables 2010
Global Status Report (REN21 2010), investment in clean
energy assets (not including large hydro) was $29.5 billion
in the first quarter of 2010, 63% above that in the same
period of 2009. The global capacity of many renewable
technologies increased at rates of 10 - 60% annually dur-
ing the period from the end of 2004 through 2009. In the
power sector, though conventional fuels (fossil fuels and
nuclear) remain the primary suppliers of global energy,
power production from renewable energy (excluding large
hydro) increased by 22% in 2009. Worldwide among all
types of renewable power generating technologies, solar
photovoltaic (PV) power continues to be the fastest grow-
ing power generation technology. Cumulative global PV
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installed capacity was almost six times larger in 2012 than
in 2004 (REN21 2010). In 2009, about 16% of all new elec-
tric power capacity additions in Europe were credited to
Solar PV (REN21 2010). In North America, an estimated
470 MW of solar PV was installed in 2009 in the United
States (REN21 2010) where 1800MWof PV is expected to
be installed on the power grid by 2013. Over 1600 MW of
PV was under development in Ontario, Canada at the end
of 2011 (Ontario Power Authority 2011).
Some facts of solar PV power are particularly favorable

for investors: 1) The source of solar photo-voltaic (PV)
is free and clean; 2) Solar PV power is easier to predict
and more reliable/stable than wind power. Sunlight lev-
els, while still at the mercy of weather patterns, are not
as unpredictable as wind speeds; the fact that solar cells
don’t work at night is at least a predictable feature of their
design; 3) Research (Rowlands 2005; Perez et al. 2012)
conducted in the United States and Canadian electricity
markets finds that solar PV power is highly associated
with peak market demand and to somewhat lesser extent
associated with high power prices. It also points out that
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the PV power is a potential solution to provide depend-
able peak power to meet growing summertime demand.
However, investors must balance these desirable features
against the high capital cost of solar PV power. Although
a great deal of analysis has been done on the scientific and
engineering development of solar cells, much less litera-
ture exists on the economic analysis of these cells. The
paper by (Powell et al. 2009) calculates various financial
indicators for an “organic” solar cell. Their work uses an
approach (complementary to the one taken here) for sim-
ulating ground level insolation measurements for which
historical data does not exist. The repayment time met-
ric is calculated in the (Powell et al. 2009) paper, but
assuming market electricity prices, and finds that pay-
back periods are too large to be economically viable. In
a later work, (Azzopardi et al. 2011) compute the aver-
age cost of generated power metric for such organic solar
cells.
The dramatic growth in the solar PV industry has come

in large part because of substantial government sup-
port. In the first decade of the 21st century, the world’s
major governments launched, updated or modified sev-
eral programs to ensure that financial and administra-
tive instruments are available to aid the development of
renewable energy. Common policy measures for promot-
ing solar PV power generation are feed-in tariffs, capital
subsidies or grants, tax credits, net metering and direct
public investment or financing. The most common pol-
icy used to encourage solar PV power is the feed-in
tariff (FIT). A FIT offers stable prices under long-term
contracts for energy generated from renewable sources.
Germany is a pioneer and advocate for feed-in tariff pol-
icy among European countries. In 2000, Germany adopted
the Renewable Energy Sources Act (Germany 2000),
which is a replacement of the previous Electricity Feed Act
launched in the 1990’s. The German Renewable Energy
Sources Act turned out to be a great success and has since
been amended several times. Following Germany’s suc-
cess, between 2005 and 2010 at least 50 countries and 25
states or provinces adopted feed-in tariffs (REN21 2010).
For instance, France adopted a feed-in tariff of EUR 42-
58 cents/kWh for ground-mounted PV systems in 2009
(REN21 2010). Japan also implemented its first feed-in
tariff of JPY 48/kWh for residential PV systems in 2009
(REN21 2010). In the Province of Ontario Canada, the
current (2012) FIT program provides much higher rates
than the market price for the electricity generated from
solar PV. In addition, the rates are fixed even though the
market price is variable. The Ontario FIT offers CAD 44
cents/kWh for large scale solar PV plants (Ontario Power
Authority 2012). On the other hand, the monthly volume
weighted average Hourly Ontario Energy Price (HOEP)
between 2003 and 2011 has always been below CAD 10
cents/kWh (IESO 2012).

An investor in solar PV projects faces high risks, of
which the three largest are: high capital costs, price risk,
and volume risk. As mentioned above, high capital cost is
indeed a concern but the trend of such costs is falling and
capital subsidies may be available in local jurisdictions.
Price risk arising from highly volatile electricity prices is
another big issue in power plant financing. Even though
solar PV power, which is not generated during the low
demand night time hours, is associated with peak electric-
ity prices (Rowlands 2005), this does not suffice to remove
all price risk. The goal of a FIT program is to provide
constant power rates, thereby removing price risk, and
to make these rates sufficiently large that sufficient funds
may be generated by the developer even in years which
are not very sunny, thereby vastly reducing the impact of
volume risk. This paper presents a statistical framework
for answering the question of whether a given feed-in tar-
iff is high enough to effectively eliminate both price and
volume risk. The statistical framework is applied to show
that the FIT tariff level in 2012 Ontario sufficed to elimi-
nate solar farm volume risk, as measured by two financial
metrics.
Risks other than volume risk include weather damage

to panels from hail or snow, faster than expected degra-
dation in panel performance due to extreme cold or heat
and transmission line failure. This paper does not con-
sider these risks, which may be hedged using insurance or
product warranties.
This paper presents a representative case study from the

city of London in the Canadian province of Ontario. The
case study demonstrates how FIT performs as a financial
inducement to promote solar PV power generation. We
seek to answer the question: is the Ontario FIT price at the
correct level? This question is answered using two types
of financial metric. The first is based on the repayment
time. This is the length of time a developer would take
to repay the loan taken out to construct the solar farm.
This repayment time will fluctuate according to future
sunshine level patterns, and so will be a random variable;
histograms of the outcomes of this random variable will
be generated and reported. The repayment time conclu-
sions are then reinforced using calculations of the Cash
Flow at Risk (CFaR) metric (RiskMetrics Group 1999).
The relatively new CFaRmetric captures some of the risks
due to uncertain cash flows in a way that is impossible
for a more traditional engineering economic analysis per-
formed using a Discounted Cash Flow approach (White
et al. 2010). The CFaR metric reports the worst cash
flow that can happen at a given materiality threshold; for
instance, that 19 times out 20 the worst lowest cash flow
that would be realized in a given year is X. Minimal work
has focused on the application of the CFaR metric in
the solar PV industry; this new metric will introduce an
important new perspective for solar investors. The results
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of the repayment time and CFaR studies both show that
the Ontario FIT levels were, in 2012, more than sufficient
to cover the variable insolation risk considered here.
The rest of this paper is organized as follows. Section

‘Solar PV financial basics’ describes the financial basics
of a solar PV plant. Section ‘Impact of volume risk on
repayment time’ describes the methodology used to ana-
lyze repayment time of a solar PV plant and discusses the
results. Section ‘Sensitivity analysis’ presents a sensitivity
analysis. Section ‘Cash flow at risk’ presents a Cash Flow at
Risk analysis. Section ‘Conclusions’ concludes the paper.

Solar PV financial basics
Solar energy comes from incoming solar radiation (inso-
lation). A solar PV plant employs solar panels to directly
convert sunlight into electricity. A solar PV power plant is
characterized both by its geographical location and by its
installed capacity. Installed capacity, also known as nom-
inal capacity or nameplate capacity, refers to intended
sustained power output levels under ideal conditions. The
ideal working condition for a PV array is at a cell temper-
ature of 25°C and at solar irradiance of 1000 W/m2. This
is called the standard test condition (STC) of a solar cell.
However, PV arrays rarely operate under these conditions.
The actual output of the plant varies with orientation and
efficiency of PV arrays, time of the day, season of the
year and state of the atmosphere. The capacity factor is a
measurement of the efficiency of the plant’s actual output
power. Solar PV capacity factors are typically under 25%
(Bellemare 2003).

DCF analysis
It is common in engineering economic analysis (White
et al. 2010) to employ discounted cash flow calculations.
This methodology is also known as net present value
(NPV) analysis. Future net cash receipts of a project are
projected and then discounted with the appropriate time
value of money and then summed to decide if a project is
worthwhile. Within the DCF framework, the repayment
time is a common metric to characterize the economic
performance of industrial projects. Some papers (Drury
et al. 2011; Sidira and Koukios 2005) use time-to-net-
positive-cash-flow (TNP) payback time which is similar to
the repayment time idea used in this paper. The repay-
ment time is the earliest time at which a project is able
to repay all of its debt. In other words, for our example,
it is the time horizon for which the solar PV plant has
zero net present value. NPV or DCF analyses are standard
ways to evaluate investment profitability. For example,
both (Drury et al. 2011; Pappas et al. 2012; Rehman et al.
2007; Borenstein 2008) used NPV as an indicator in their
economic analysis.
The cash outflow in a solar PV plant contains initial

investment (the cost of purchasing and installing solar

modules, land cost etc.) as well as annual operation and
maintenance (O&M) costs. The annual cash inflow of a
solar PV plant is simply the sales resulting from selling the
electricity the panels generate from solar irradiation. Neg-
ative numbers denote cash outflows and positive numbers
denote cash inflows. All annual inflows are discounted
back to a common initial reference time t0 using a com-
mon discount rate or internal rate of return. The first time
at which the present value of all cash outflows exactly bal-
ances the present value of all cash inflows is termed the
repayment time of the plant. In mathematical terms the
result is equation (1).

V (t) = −C0−
t∑

i=1

OMi
(1 + rOM)i

−
t−1∑

i=0

Li
(1 + rL)i

+
t∑

i=1

Ei
(1 + rE)i

.

(1)

Here:

V (t) is the present value of solar PV plant [Units $],
C0 is the initial capital cost [Units $],
t is the time, measured in years [Units years],
OMi denotes the O&M costs for i th year [Units
$][N.B. paid in arrears, see section ‘Land cost’],
Li denotes the land costs for i th year [Units $][N.B.
paid in advance, see section ‘Land cost’],
rOM is the real interest rate for OM cost [Units
%/year],
rL is the real interest rate for land cost [Units %/year],
rE is the real interest rate for energy price [Units
%/year],
Ei denotes the earnings for i th year by selling
electricity [Units $].

Parameter identification
Solar PV plant
Our case study assumes a PV plant of capacity 10MW is
to be built in a rural area near London Ontario, Canada.
We assume that the power plant will operate for 20 years
in order to match the terms of Ontario’s FIT contract.
We assume the PV plant capacity factor to be 16% and
that inverters of the PV system which convert direct cur-
rent (DC) to alternating current (AC) are 90% efficient.
To install a nominal capacity of 1kW modules, an area
between 7m2 and 10m2 is required (Solar Server 2010).
This plant requires an area of approximately 70, 000m2

(approximately equivalent to 17.29 acres) for a solar PV
plant with 10MW installed capacity.

Interest rates
We assume that the project is financed before construc-
tion and that the same interest rate applies for all cash
flows. To estimate the applicable rate, we consider Clean
Renewable Energy Bonds (CREBs), a federal loan program
sponsored byUS Internal Revenue Service (IRS) to finance
eligible clean renewable energy projects. On March 1st
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2012, the interest rate of a CREB with 20-year maturity
was 4.79% (U.S. Treasury 2012). Therefore we believe it is
appropriate to estimate an interest rate of 5% for our case
study.

Module cost
Generally, PV module costs represent 40-60% of total
PV system costs, and installation costs account for the
remaining costs (REN21 2010). The larger the solar plant,
the smaller the installation cost for each unit.
As of 2007, the unit installation cost for a typical 10kW

residential system was $8.00/W (Borenstein 2008).
By the end of 2009, solar PV module prices fell below

$2.00/W in some instances (REN21 2010). If we dou-
ble that to include installation costs, we may assume a
total cost of $4.00/W for solar PV systems module and
installation.
Combining the above information with the figures

quoted in (International Energy Agency 2009) and (Drury
et al. 2011), where average annual PV system costs
was reported as $3.85/W and $3.91/W respectively, we
believe it is reasonable to assume the costs of PV modules
and installation are $4.00/W in this case study.
Typical OM costs are 1% of total initial investment

(PVResources 2012).

Land cost
One may purchase or rent the premise in order to run
the power plant. In this case study, we assume the solar
farm operator leases a premise in rural area. The land so
rented is assumed to be otherwise unproductive except
for relatively low value agricultural or recreational uses.
According to a survey in (Weersink et al. 2011), the
weighted average monthly rent for Middlesex County
(which surrounds London, Ontario) was $200/acre in
summer 2010. Therefore, we estimate a total land rent
of $3,458/month. In Ontario, rent is typically paid in
advance. The details of a lease will vary across rental
agreements, but to be conservative we assume that the
rent is paid one year in advance. In contrast, work done is
often paid in response to the receipt of an invoice, which
must be settled on normal business terms of for exam-
ple 90 days in arrears, so it makes sense to model other
costs of the project as being covered at the end of the year.
The interest rates used in this analysis are low enough to
make the impact of these choices rather small in the final
results.

Insolation
We obtained hourly global insolation from 1955 to
2004 at London International Airport weather station
from Environment Canada CanadianWeather Energy and
Engineering Data Sets (CWEEDS) (Environment Canada
2012). our financial model requires annual cash flows, so

we average the data set by year in order to get a constant
daily global insolation for each year.

Ontario’s FIT
The FIT in Ontario guarantees that all power generated
from solar PV plants may be sold at $0.44/kWh (Ontario
Power Authority 2012).

The calculation
By listing all the details and calculations each year’s cash-
flow from equation (1), we obtain the following tables for
DCF analysis. These tables may then be used to compute
various financial metrics including repayment time.
Tables 1 and 2 include all parameters and the DCF

calculations. Table 1 exhibits the values for input param-
eters and steps for carrying out annual income (not yet
discounted) from selling solar-generated power. Table 2
lists each year’s cash flow after applying the appropriate
discount factors.

Methods
Tables 1 and 2 serves the purpose of demonstrating the
DCF analysis. We denote the result of Table 1 the “con-
stant insolation” scenario since we use constant daily
global insolation for each operating year in the above
DCF analysis. But in reality, insolation is random, fluc-
tuating around some constant level. As financing a solar
PV plant involves a huge amount of capital, decision mak-
ers must thoroughly understand all risks which impact the
plant’s repayment time. As mentioned in section ‘Intro-
duction’, volume risk is the major remaining risk. In order
to reflect the impact of volume risk on the repayment
time, we introduce some dynamics to model the solar
insolation.
Although cloud cover data is readily available, it turns

out to be unsuitable for the current purpose, for reasons
explained in Appendix A.
The next step is to apply both retrospective and boot-

strap analysis to model randomness of solar insolation.
Some data abnormality issues emerge. The next sub-
section explains these abnormalities and then return to
retrospective and bootstrap analysis.

Data abnormality
Our data is the CWEEDS hourly global insolation at
London International Airport from 1955 to 2004. We
average every year’s hourly global insolation to obtain
annual total global insolation. The time series for annual
average global insolation are plotted in Figure 1, which
reveals some possible data inconsistency issues.
If we determine the maximum reading for each indi-

vidual hour from each year, we observe two regimes of
data from some of these time series. For example, we pick
the annual maximum irradiance for 11AM, noon (12PM),
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Table 1 DCF analysis input parameters, annual production etc

Quantity Unit Total

INITIAL SYSTEM COST

Installed Capacity 10 MW

panel purchase and installation 4 $/W

Initial System Cost Total $ 40,000,000

OTHER COSTS

Land Area 17.29 acre

Land Rent 200 $/acre/month

Land Cost Total $/yr 41,496

Application Cost $ 5,000

OMCOSTS

% of Installation Costs 1 %

OM Annual Total $ 400,000

ANNUAL PRODUCTION

Installed Capacity 10 MW

Mean daily global insolation in Toronto Area 4 kWh/m2

Total Energy received annually kWh/m2/yr 1,394

PV moduel efficiency 16 %

Total Annual DC output kWh/m2/yr 251

DC to AC conversion factor 90 %

Estimated actual Annual output kWh/m2/yr 226

Area of modules needed to provide this rated capacity 70,000 m2

Estimated annual kilowatt hours kWh/yr 14,069,261

Ontario FIT rates 0.44 $/kWh

Estimated Annual Income $/yr 6,232,683

Annual Interest rate 5.0 %

Table 2 DCF calculation of each year’s revenues, costs and net profit, in 2012 Canadian dollars

Year 0 Year 1 Year 2 Year 3 Year 4

Initial System Cost (40,005,000)

OM Cost (380,952) (362,812) (345,535) (329,081)

Land Cost (41,496) (39,520) (37,638) (35,846) (34,139)

Electricity Sales 5,935,888 5,653,227 5,384,026 5,127,643

Cumulative Income 5,935,888 11,589,115 16,973,140 22,100,784

Cashflow (34,450,064) (29,159,649) (24,121,159) (19,322,596)

Year 5 Year 6 Year 7 Year 8 Year 9 Year 10

(313,410) (298,486) (284,273) (270,736) (257,844) (245,565)

(32,513) (30,965) (29,490) (28,086) (26,749) (25,475)

4,883,470 4,650,924 4,429,451 4,218,525 4,017,643 3,826,326

26,984,254 31,635,177 36,064,628 40,283,153 44,300,796 48,127,122

(14,752,537) (10,400,100) (6,254,921) (2,307,132) 1,452,667 5,033,428
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Figure 1 Annual average daily global horizontal irradiance from
year 1955 to 2004, London International Airport, inW/m2, data
courtesy of Environment Canada CWEEDS.

1PM and 2PM separately. The time series plots for those
hours are shown in Figure 2.
There clearly appears to be two sets of data with differ-

ent average levels in each of these plots. The difference
of these two average levels is about 10%. The reason for
this is unknown although we suspect a change in mea-
surement technique around 1978. Because of this issue,
we choose to use only data from 1978 and after in order to
remain consistent with measured recent data.

Data autocorrelation
Evidence fails to support the hypothesis that the total
annual insolation at a point is meaningfully auto-
correlated, although of course is likely autocorrelation at
higher frequencies. The lack of annual autocorrelation is
seen in the autocorrelation (acf ) plot of Figure 3 which
shows that the autocorrelations at all nonzero lags lie
below the significance threshold which distinguishes them
from zero. Further evidence is given by the related scat-
ter plot of Figure 4 which plots insolation at year k+1
against insolation at year k. The regression line fitted to
the Figure 4 data shows little evidence of autoregressions
even at time lag 1.

Retrospective and bootstrap analysis
Now we are ready to employ retrospective and boot-
strap analysis on the data sample. The retrospective and
bootstrap analyses use identical settings to the constant
insolation scenario, with the one change being that they
model fluctuations in the annual global insolation. We no
longer assume constant insolation. We specify the con-
tract life to be 20 years. So each time we need to generate
20 random numbers to give the insolation for each year in
order to work out the repayment time problem.
Retrospective analysis means evaluating what would

have happened with actual historical results. We apply
the actual observed sequence of historical insolation. Each
sequence contains 20 observations. In other words, ret-
rospective analysis shows the repayment time for a solar
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Figure 2 Annual maximum daily global horizontal irradiance at 11am, 12pm, 1pm and 2pm respectively, inW/m2, 1955 - 2004, London
International Airport, data courtesy of Environment Canada.
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Figure 3 Autocorrelation vs. time lag. Annual insolation data at London international airport, Ontario 1975 - 2004. All points lie between the
horizontal lines representing measured acf statistically indistinguishable from zero.

plant as if it were built in 1978, 1979 etc up to 1995. In
this case, the sample size is small with only 8 samples in
total, i.e. 1978-1997, 1979-1998 up to 1985-2004. There-
fore we could work out the average repayment time under
retrospective analysis.
It is impossible, given the constraints of limited data,

to come up with 10,000 completely different retrospec-
tive results. In order to model more variability in solar
insolation, we use the bootstrap method (Efron and Tib-
shirani 1994). The bootstrap is a statistical technique
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Figure 4 Insolation year (k) vs. Insolation year (k+1) from 1975 to
2004. The line of best fit through the data is y = 0.07294x + 3545
with R2 = 0.005384.

that strongly depends on the development of computer
technology. It is extremely useful when the underlying dis-
tribution is complicated or unknown or when sample data
is insufficient.
Each time, we sample with replacement from the his-

torical annual global insolation data pool to generate a
new sequence of annual insolation. We call this sequence
of data a sample path. By generating N sample paths
(in our simulation, N = 10,000), we are able to estimate
the distribution of the repayment time. N will be cho-
sen sufficiently large to estimate financial metrics within
our desired accuracy levels. Retrospective analysis may be
considered a very special case of bootstrapping in which
just the sample paths which actually occurred are used.

Results and discussion
The bootstrap technique described in section ‘Retrospec-
tive and bootstrap analysis’ is used to generate 10,000
possible total annual insolation sequences. Using the eco-
nomicmodel for the solar plant described in Section ‘Solar
PV financial basics’, the time required to repay the capital
costs of the plant is calculated on each of these sequences.
A histogram of the resulting fraction of runs leading to a
given repayment time interval is provided in Figure 5.
Figure 5 is a bell shaped curve with a slightly heavy right

tail. The peak value of repayment time lies between 9.50
and 9.60 years. The average repayment time by bootstrap
analysis is 9.49 years and 9.45 by retrospective analysis.
Note that the repayment time reported by (Powell

et al. 2009) is about twice that reported here. This makes



Lu and Davison Environmental Systems Research 2013, 2:5 Page 8 of 13
http://www.environmentalsystemsresearch.com/content/2/1/5

8.8 8.9 9 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10
0

0.5

1

1.5

2

2.5

3

Repayment Time (years)

D
en

si
ty

histogram
normal fit
historical
bootstrap mean

Figure 5 Histogram of repayment times by bootstrap analysis, capacity of 10MW, FIT rate $0.44/kWh, inverter efficiency 90%, system
efficiency 16%, location London, ON rural area. Dashed line on the right denotes average repayment time obtained with bootstrap analysis and
the dashed line on the left denotes average repayment time obtained with retrospective analysis.

sense, because in addition to modelling a completely dif-
ferent solar technology, (Powell et al. 2009) assume that
the power was worth only the market price and not the
much larger feed-in tariff price used here. According to
Figure 5, the worst repayment time is 9.91 years and the
best is 9.0 years. The difference between the two is less
than 1 year, and the corresponding standard error of the
simulated results is 0.16 years. These provide convincing
evidence that FIT is an effective tool to eliminate the vol-
ume risk in financing solar PV plants. These results are
helpful for those investing in solar PV plants, after which
investors earn pure profits for approximately half of the
contract life (10 years). Their investment are repaid after,
at worst, 9.91 years. Second, the standard error of the
repayment time is small. The repayment time falls in a
narrow window, so even the worst case is not very much
worse than the best case.
If, despite the evidence presented in section ‘Data auto-

correlation’, there was a small auto-correlation in annual
insolation, we could no longer use the naive bootstrap
method presented here but would have to use the more
sophisticated block bootstrap method (Hall et al. 1995).
The result of such a study would likely show a posi-
tive auto-correlation would increase the probability of
abnormally long repayment time while a negative auto-
correlation would decrease this risk. This is most easily
seen by consider the (unrealistic) limiting case of a 100%
auto-correlated signal in which either insolation would
always be very high (short repayment time) or very low

(long repayment time). The current random setting favors
more intermediate repayment times.

Sensitivity analysis
The methodology used here is broadly consistent with
that used in other broadly similar studies such as (Kirby
and Davison 2010; Drury et al. 2011; Davison et al. 2012);
no exact comparison study to this has been published. We
also test the robustness of these results via the following
parameter sensitivity study.
As stated in section ‘Introduction’, solar PV projects are

sensitive to government subsidies and economic policies.
In this section, we investigate the repayment time under
different schemes: varied interest rates and varied FIT
rates. We evaluate the repayment time of solar PV plant
at different interest rates and FIT rates respectively such
that we could see how sensitive repayment times are with
respect to certain economic inputs.

Interest rate
We vary interest rates from 5% to 10% with an 0.5% incre-
ment. We compare average repayment time of bootstrap
analysis, retrospective analysis and constant insolation
scenario. We plot average repayment time of these three
scenarios under different interest rate settings below.
Figure 6 shows the repayment time calculated by con-

stant insolation from section ‘Solar PV financial basics’,
retrospective analysis and bootstrap analysis. The repay-
ment times in all three cases increase as the interest rate
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Figure 6 Repayment time, in years, capacity 10MW, FIT rate $0.44/kWh, inverter efficiency 90%, system efficiency 16%, location London,
ON rural area. Solid line is obtained via bootstrap analysis, dashed line is obtained via constant insolation, and dashed line connected by circles is
obtained via retrospective analysis. Bootstrap analysis resutls include ± standard error width.

increases. The repayment time computed using bootstrap
analysis fluctuates around the line obtained by using ret-
rospective analysis. The repayment time obtained from
the constant insolation assumption increases less rapidly
than those curves obtained from bootstrap and retro-
spective analyses.

FIT rates
We vary FIT rates from $0.30/kWh to $0.44/kWh with an
increment of $0.02/kWh.
Figure 7 is the plot of repayment time under different

FIT rates. The average value of repayment time decreases
as the FIT rate increases, as does the variance.
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Figure 7 Repayment time varied by FIT rates, capacity 10MW, interest rate 5%, inverter efficiency 90%, system efficiency 16%, location
London, ON rural area. Solid line is obtained with bootstrap analysis, dashed line via constant scenario and dashed line connected by dots is by
retrospective analysis. Bootstrap analysis resutls include ± standard error width.
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Moreover, comparing sensitivity to FIT rates and inter-
est rates, suggests that repayment time is more sensitive
to FIT rates than to the impact of interest rates.

Cash flow at risk
Cash Flow at Risk (CFaR) is another risk metric that can
be used to quantify the risks associated with investment
in solar PV plants. Cash Flow at Risk (CFaR) was first
developed in 1999 by the RiskMetrics group to quan-
tify, within some probability tolerance, the worst cash
flow a company might experience over a given period
(RiskMetrics Group 1999). A description of its use for
non-financial firms or projects such as described in this
paper is given in (Stein et al. 2001). The CFaR metric is
in many ways analagous to the Value of Risk (VaR) met-
ric used in financial risk measurement. The uses of VaR,
and the way in which it may be calculated, is described
in the book (Jorion 2000). The cash flow at risk mea-
sures the level below which the cash flows, normally
of a non-financial firm, will not fall with some fixed
probability in any given period. In mathematical terms,

Prob(E(C) > CFaR) = p%. (2)

Here:

E(C) denotes firm/project’s expected cashflow in a
given duration,
CFaR denotes cashflow at risk (in dollar amount), p
is some fixed probability.
Using this measurement, we can investigate the level
of the cash flows at some fixed probability and time
duration.

We can also investigate the probability that the cash
flows do not fall below 0 in any given year using CFaR
measurement. For example, Figure 8 shows the distribu-
tion of cash flows for PV plant at 9.5 years. It shows that
the probability of our model PV plant being debt free
in 9.5 years is more than 50%. This is, of course, fully
consistent with the repayment times estimated in section
‘Sensitivity analysis’. Figure 9 shows the 99% cash flow at
risk for year 10 is estimated to be (6.1294±5.3244)∗105, a
positive number. This shows that even under a worst case
scenario, the plant load has been repaid with 10 years of
FIT contract remaining.
This suggests the strong conclusion the average repay-

ment times discussed in 2 are extremely robust to varia-
tion in insolation scenarios.

Conclusions
In this paper, we explored volume risk in a large scale solar
PV plant under FIT based on a case study in Ontario,

Canada. We use two different risk metrics, repayment
time and CFaR, to investigate the impact of volume risk
under FIT.
It can be shown that under the current FIT rate and

other economic parameters, volume risk has little impact
on financing solar PV plants. The repayment time of a
solar PV farm is much more rapid than the 20 years over
which the current FIT agreements guarantee pricing, even
allowing for the occurrence of extreme events. Exam-
ined from another angle, the worst case cash flow at risk
metric, fully confirm this result. Sensitivity analyses do
not change this qualitative result. We conclude that the
Ontario Canada FIT 2012 program was an effective tool
to encourage investment in solar PV plants. We also find
that repayment time is strongly sensitive to FIT rates. So
FIT is a very efficient tool to impact/control the volume
risk.
The method shown here can be applied to the engi-

neering economic analysis of other solar power projects
both in other areas of Ontario and outside that province.
The idea of using a bootstrap approach to simulate on
environmental data to financial outcomes, including the
repayment time and CFaR metrics chosen here, is gen-
erally applicable. However, it works best in a FIT style
financial environment in which electricity prices are con-
stant. If this approach were to be used in a deregulated
price environment, prices would also have to be simulated
and their correlation with weather also considered. The
quantitative results of this study suggest that Ontario’s
2012 FIT levels would all be sufficient in sunnier areas of
the world.
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Figure 8 Cash Flow at Risk (CFaR) for solar PV plants in 9.5 years,
capacity 10MW, interest rate 5%, inverter efficiency 90%, system
efficiency 16%, location London, ON rural area.
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rate 5%, inverter efficiency 90%, system efficiency 16%, location rural area near London, ON.

Appendix A
Cloud cover model
When the Earth is 1 Astronomical Unit from the sun, the
solar irradiance at the top of the earth’s atmosphere on
a unit area perpendicular to the beam is approximately
1367W/m2 (Lorenzo 2003). This number is called the
solar constant.
In general, a reasonable fit to observed clear day global

radiation data is given by (Kitchin 1987):

G = G0 ∗ ε0 ∗ 0.7AM0.678 (3)

where G0 is the solar constant, ε0 is the eccentricity cor-
rection factor and AM is air mass. The air mass (AM)
is defined as the relative length of the direct-beam path
through the atmosphere compared with a vertical path

Figure 10 PB is the distance traveled through the atmosphere
by the Sun’s rays observed at point P when zenith angle is θ s.
Source: figure 2.7 in (TACA 2012).

directly from the top of the atmosphere to sea level. For an
ideal homogeneous atmosphere, AM can be expressed in
terms of the zenith angle θzs, depicted in Figure 10:

AM = 1
cos θzs

(4)

As a sun beam passes through the earth’s atmosphere, the
solar radiation is modified by the interaction with com-
ponents such as water droplets. In atmospheric sciences,
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Figure 11 Daily global horizontal irradiance vs. cloud opacity at
12PM, year 2000 to 2004, data courtesy of Environment Canada.
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optical depth is a measure of the proportion of radia-
tion absorbed or scattered along a path through a partially
transparent medium (See Figure 10 for a conceptual illus-
tration). The insolation is thus defined by the following
equation:

I = I0 ∗ exp−AM ∗ τ (5)

where τ is optical depth, I is observed intensity after a
given path and I0 is the intensity of radiation at the source.
Consider that we could abstract the main component

interacting with sun beam to be cloud, we scale cloud
cover data to serve as τ in above equation and substitute
G in equation (3) for I0.
Thus, the model of capturing global radiation at the

ground level is:

I = G0 ∗ ε0 ∗ 0.7AM0.678 ∗ exp−AM∗τ (6)

whereG0 is the solar constant, ε0 is eccentricity correction
factor, AM is air mass and τ is optical depth.
Historical cloud cover data are obtained through Envi-

ronment of Canada. But Figure 11 shows that the correla-
tion between solar radiation and cloud cover is small. One
explanation is that optical depth relates to cloud type as
well as cloud extent.
Apparently, radiation collected on a day when the cloud

cover is 100%, but made up of high white clouds is
nowhere close to that collected on a similar day when the
clouds were lower and dark. As a result, we dropped the
idea of modelling cloud cover and instead, used insolation
data directly.
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