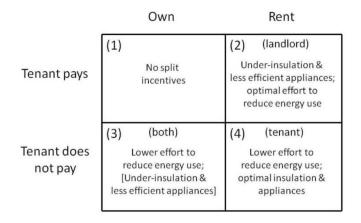
Utilities Included: Split Incentives in Commercial Electricity Contracts

Katrina Jessoe,¹ Maya Papineau,² and David Rapson¹

¹University of California, Davis

²Carleton University

October 18, 2018


Efficiency costs from a principal agent problem

- Employment, credit, insurance and agricultural contracts
 - Stiglitz (1974), Grossman (1983), Chiappori and Salanie (2000), Finkelstein and McGarry (2006), Karlan and Zinman (2009), Einav et al. (2013)

Evidence of modest split incentive problem in residential energy setting

- Consumption effects of owner-paid utilities contracts
 - Levinson and Niemann (2004), Gillingham et al. (2012), Elinder et al. (2017), Myers and Souza (2018)
- Tenant paid contract and underinvestment by landlord
 - Davis (2012), Myers (2014)

<ロト < 同ト < ヨト < ヨト

(日)

Motivation: Magnitude in Commercial Setting

Commercial sector accounts for 35% end-use electricity consumption

Close to half of units occupied by renters

Little is known about contract design and electricity use in commercial setting

- Kahn et al. (2014): energy bills 20% lower for tenant-paid contracts
- Difficult to separate split incentives from sorting on energy characteristics

Commercial users larger in size and smaller in number

• Potential efficiency gains from larger savings per customer, fewer points of contact

(日)

How Might Split Incentives Affect Behaviour?

How Might Split Incentives Affect Behaviour?

Tenant-side

- Overcooling in the summer may increase energy use by 8%
- Keeping doors open in summer may increase energy use by 9%
- Miscellaneous equipment such as fans and space heaters account for 20% electricity use

Owner-side

- Delay energy-related investments
- Purchase more energy inefficient equipment

What is the effect of contract type on commercial electricity use?

Our approach: effect of temperature shocks on demand for cooling across contract type

- Variation in temperature: bill cycles
- Assignment to contract type: non-random

Data: Monthly billing data for 1126 commercial firms

- Contract type: building level
- Weather: billing-cycle zip code, cooling and heating degree days

(日)

Air conditioning usage primary channel of adaptation (Auffhammer and Mansur (2014))

- For largest firms, the AC response to temperature shocks depends on contract type
 - Tenant paid contracts lower electricity use by 1.4 % per daily CDD
 - About a 3% decrease in electricity use by top decile users
- A price signal dampens the response to temperature shocks among top consumers
- Consistent with bill savings not covering adjustment costs in small firms

<ロト < 同ト < ヨト < ヨト

Empirical predictions relate to the temperature response gradient: $\frac{\partial X}{\partial T}$

- Electricity consumption by tenant k is $X = f(E, T, P_k(W))$
 - E = energy efficiency capital
 - T = temperature
 - $P_k(W)$ = price per kWh of electricity paid by tenant k
 - W = contract type. W = 0, owner-paid; W = 1, tenant-paid.
- Demand for electricity is decreasing in P and E, increasing in T

< □ > < 同 > < 三 >

When W = 1, k pays p > 0 for every kWh. When W = 0, k pays p = 0.

• Tenant k's TRG will be shallower if W = 1 than if W = 0, all else equal (including E).

When W = 1, and the landlord cannot obtain a rent premium that accounts for the higher up-front costs of energy efficiency, E levels will be lower than if W = 0.

• Tenant k's TRG will be steeper if W = 1 than if W = 0.

These are competing hypotheses about the electricity response gradient in tenant-paid buildings.

Any conservation benefit from a tenant paying their own energy bills could be mitigated or overwhelmed by building capital inefficiencies.

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Empirical Setting: Small C&I Customers in CT

Metering regulations in CT

- Tenant level billing requires presence of a sub-meter
- Until summer 2013, sub-meter retrofits prohibited
- Presence of sub-metering determined at time of building construction
- Data on 2013 post-prohibition contract type
 - Observe firms in buildings that switched contract type

Area of study is 17 counties greater Bridgeport, Fairfield and New Haven

- Heating predominantly with fuel or natural gas
- Hypothesize electricity use most responsive to summer weather via AC

-Monthly billing data from UI spanning 10/2007 to 5/2011

-Panel of 40,962 observations from 1,126 firms

-Property level information on contract type and building characteristics

- 72% firms located in office buildings
- 84% firms on tenant paid contracts

-CDD and HDD in a zip code billing-month

- Daily temperature data at 10 stations from NOAA
- Difference in weather across 32 zip codes in UI's territory
- Difference in weather across 16 billing cycles

Image: A math a math

Differences in Observables Across Contract Type

	All Firms					
	Tenant-Paid Mean St. Dev.		Owner-	Paid	t-Statistic	
			Mean St. Dev.			
kW	27.3	42.9	33.5	61.4	0.42	
kWh (000s)	7.7	13.8	9.0	17.1	0.31	
Bill (\$)	627	999	720	1220	0.31	
Bill Length	30.3	1.3	30.4	1.3	0.30	
Building S.F. (000s)	57.2	59.7	66.8	93.6	0.43	
Year Built	1974	26	1968	33	0.76	
Building Stories	2.6	1.6	3.4	3.1	1.09	
Industry	0.12	0.33	0.10	0.31	0.25	
Trade, Accommodation	0.15	0.36	0.12	0.33	0.35	
Finance, Real Estate, Management	0.47	0.36	0.55	0.50	0.66	
Education, Health, Pub. Admin.	0.19	0.36	0.18	0.38	0.11	
Entertainment, Recreation, Services	0.07	0.36	0.05	0.21	0.33	
North	0.40	0.49	0.36	0.48	0.33	
South	0.60	0.49	0.64	0.48	0.33	
City	0.30	0.46	0.31	0.46	0.09	
Observations	34,304		6,658			
Firms	94	48	17	-	1 ▶ < (□] ▶	

Differences in Observables Top Consumption Decile

	Top Decile Firms					
-	Tenant	-Paid	Owner-	Paid	t-Statistic	
	Mean St. Dev.		Mean St. Dev.			
kW	132.4	71.2	164.2	120.9	1.11	
kWh (000s)	40.6	24.1	44.5	34.1	0.47	
Bill (\$)	3002	1759	3276	2403	0.47	
Bill Length	30.4	1.3	30.4	1.3	0.03	
Building S.F. (000s)	86.8	79.7	144.9	146.4	1.68	
Year Built	1978	19	1973	24	0.85	
Building Stories	3.0	2.4	6.1	5.1	2.61*	
Industry	0.22	0.41	0.18	0.39	0.40	
Trade, Accommodation	0.09	0.28	0.04	0.20	0.92	
Finance, Real Estate, Management	0.46	0.50	0.77	0.42	2.83*	
Education, Health, Pub. Admin.	0.09	0.29	0.00	0.00	2.96*	
Entertainment, Recreation, Services	0.15	0.35	0.00	0.00	4.09*	
North	0.39	0.49	0.27	0.44	1.06	
South	0.61	0.49	0.73	0.44	1.06	
City	0.27	0.45	0.40	0.49	1.07	
Observations	3,202		703			
Firms	91		19			

Empirical Approach: Electricity Use and Temperature Gradient

Idea: if split incentives problem, then differences in demand for cooling

Implementation: electricity response to CDD across contract type

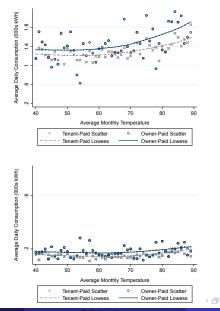
 $Y_{it} = \beta_1 C_{zt} + \beta_2 H_{zt} + \theta_1 T_i \times C_{zt} + \theta_2 T_i \times H_{zt} + \eta_i t + \alpha_t + \gamma_i + \varepsilon_{it}$

- Interact contract type with weather variables
- γ_i: firm fixed effect

Identifying Assumption: electricity response to temperature shocks differs only by contract type, or unobservables uncorrelated with contract type

- Allows for sorting into contract type based on fixed firm unobservables
- Assumes unobservables do not exhibit temperature response gradient correlated with contract type

<ロト < 同ト < ヨト < ヨト


- $Y_{it} = \beta_1 C_{zt} + \theta_1 T_i \times C_{zt} + \xi X_i \times C_{zt} + Z_i t + \eta_i t + \alpha_t + \gamma_i + \varepsilon_{it}$
 - $X_i \times C_{zt}$: interaction of building attributes and switchers with weather
 - Z_{it}: bill length

Is consumption effect across contract type robust to inclusion of building attribute interaction terms?

Are "switchers" likely to drive the results?

Image: A math a math

Consumption by Contract Type

Jessoe, Papineau, Rapson

Split Incentives

October 18, 2018 17 / 21

Split Incentive Effect

Dependent variable:		Log Usage					
	(1)	(2)	(3)	(4)	(5)	(6)	
Tenant x CDD	-0.00001 (0.00009)						
Tenant x CDD (10th Dec.)		-0.013** (0.006)	-0.015*** (0.006)	-0.015** (0.006)	-0.014** (0.006)	-0.012** (0.005)	
Tenant x CDD (9th Dec.)		0.001 (0.009)	0.004 (0.010)	0.005 (0.009)	0.005 (0.009)	0.004 (0.009)	
Tenant x CDD (8th Dec.)		-0.001 (0.007)	0.005 (0.007)	0.005 (0.007)	0.004 (0.007)	0.002 (0.005)	
Tenant x CDD (7th Dec.)		-0.004 (0.007)	-0.001 (0.008)	0.003 (0.007)	0.003 (0.007)	0.001 (0.005)	
Tenant x CDD (6th Dec.)		0.010 (0.008)	0.014* (0.007)	0.011 (0.007)	0.012 (0.007)	0.009* (0.005)	
Tenant x CDD (5th Dec.)		0.003 (0.007)	0.005 (0.008)	0.005 (0.007)	0.005 (0.007)	0.004 (0.005)	
Tenant x CDD (4th Dec.)		0.009 (0.011)	0.011 (0.011)	0.012 (0.010)	0.012 (0.010)	0.009 (0.006)	
Tenant x CDD (3rd Dec.)		-0.017 (0.014)	-0.017 (0.014)	-0.012 (0.013)	-0.012 (0.013)	-0.006 (0.008)	
Tenant x CDD (2nd Dec.)		0.005 (0.010)	0.004 (0.010)	0.006 (0.009)	0.006 (0.010)	0.006 (0.005)	
Tenant x CDD (1st Dec.)		-0.010 (0.012)	-0.009 (0.012)	-0.009 (0.011)	-0.009 (0.012)	-0.002 (0.007)	
Account & Time F.E.s, Acct. Trend	YES	YES	YES	YES	YES	YES	
Characteristics Interactions	NO	NO	YES	YES	YES	YES	
Characteristics Interactions w/ Year-Built	NO	NO	NO	YES	YES	YES	
Switchers Controls	NO	NO	NO	NO 🗧 🗖	▶ YES	 ■ YES 	

Heterogeneity in who responds and when firms respond

For the top decile of firms, tenant-paid contracts

- lead to a 3 percent decrease in annual electricity
- would reduce electricity use by close to 14% in August
- Contract impacts narrow set of customers respond during concentrated times...but largest electricity users

Aggregate consumption impact: 19,200 kWh per firm annually

• 1.4% reduction in total use

Estimates based on 110 firms

Representativeness of our sample to 1.8 commercial customers in U.S.

• Strong overlapping support in building attributes across CT and U.S.

Conjecture that split incentives problem more relevant in broader U.S.

- 34% floor space leased in CT vs. 39% in U.S.
- Owner-pay contracts: 16% in our sample vs. 24-45% in U.S.
- New England least energy-intense region in kWh per square foot

Split incentives problem among largest electricity users

- Tenant paid contract reduces electricity use by 1.4% per CDD
- Aggregate electricity savings of 1.4 percent

Channels to affect demand for AC under climate change

- Show that demand for cooling increases with heat
- Contract design attenuates this response
- First step to understand prices, demand for cooling, and heat

Energy efficiency and GHG reductions

- Private payback period less than a year
- Energy savings larger than many residential programs
- Cost-effective compared to other energy conservation programs

<ロト < 同ト < ヨト < ヨト