

USING ANALYTICS TO IMPROVE DECISION-MAKING

Mehmet A. Begen, PhD Fredrik Ødegaard, PhD

ANALYTICSis missed by most people because it is dressed in overalls and
looks like work."Thomas Edison (1847 – 1931)

August 6, 2020

Which of the following quotes best represents Analytics/Al/Big Data?

Poll 1

- 1. In God we Trust, all others must bring data. (Edward Deming, 1900-1993)
- 2. There are three kinds of lies: lies, damned lies, and statistics. (popularized by Mark Twain, 1835-1910)
- 3. Data is the new oil. (Clive Humby)
- 4. The future ain't what it used to be. (Yogi Berra, 1925-2015)
- 5. Big data is like teenage sex: everyone talks about it, nobody really knows how to do it, everyone thinks everyone else is doing it, so everyone claims they are doing it. (Dan Ariely)

Outline

- What is analytics?
- How to get started with analytics?
- Learning lessons from developing and using analytics.

What is analytics?

What does this movie have to do with analytics?

- Limited and smaller budget than competitors
- Find undervalued players
- Develop and use new performance measures
- Statistics, analytics and models
 IVEY

What is analytics?

VEV

- Analytics is the art and science of using data and models to obtain managerial insights for decision making at strategic, tactical and operational levels.
- Way of thinking, managing and doing. It is a process.
- Source of competitive advantage. Industry.

Many names and related concepts...

- Data Science
- Machine Learning
- Predictive Modeling
- Use of Big Data for Better Decisions
- Decision Making with Data
- Artificial Intelligence
- Quantitative Decision Making
- Industrial Engineering
- Systems Thinking
- Algorithms
- Bots
- Cloud computing
- IoT
- •

- Optimization
- Deep Learning
- Neural Networks
- Data Analysis and Visualization
- Simulation
- Probability and Statistics
- Forecasting
- Natural language processing
- Game theory
- Queuing theory
- Reinforcement learning
- Classification
- Clustering
-

Rise of analytics

- Generation, availability, accessibility, storage and of data and big data
 - Sales, social media, financial transactions, calls, jet engine sensors, ...
 - High volume, big variety, high velocity, varying quality (veracity), ...
- Increased and cheaper computing
- Competitive advantage drive

→

- Analytics, machine learning and AI applications
- Insights for decision making for business, engineering, healthcare, medicine, transportation, logistics, manufacturing, finance...

Examples of analytics

- Make a new business opportunity possible
 - FedEx starting story

- Establish new strategy and strategic decisions
 - Amazon's first ship and then buy model

⊗IvEy

Examples of analytics

- Solve complex and critical business challenges and issues
 - Air Canada's scheduling, revenue management, maintenance
 - UPS' logistics, operations, scheduling, planning,
 - CapitalOne's fraud detection, credit approvals,
 - Major League Baseball games scheduling
- Using analytics gives a competitive advantage. If you are NOT utilizing it, you are leaving money on the table.

Levels of Analytics

https://www.ecapitaladvisors.com/blog/analytics-maturity/

Analytics at uncertain times such as the current pandemic

Manage the current situation

- BlueDot Inc.
- Policy Modelling
 - Testing, gatherings, tracing policies, interventions....
 - Effects to the economy
 - Vaccine efforts
- Hospitals operations
 - Capacity allocation
 - · Planning to catch up with postponed treatments

• Find new opportunities

- Walmart
- Minimize and limit loses
 - Toyota

Key takeaways

- Analytics
 - is the art and science of using data and models to obtain managerial insights;
 - provides solutions to complex challenges of our time;
 - gives a competitive advantage;
 - has many methods inside its toolkit;
 - is a process;

Analytics works and its time has come.

What is the biggest challenge for your organization to employ Analytics?

Poll 2

- 1. Problem Definition we do not know what problems analytics can solve.
- 2. People & Capabilities we lack people with the right analytical background.
- 3. D A T A ! ! ! we have NO data [ALTERNATIVELY] we have TOO MUCH data.
- 4. Technology & Infrastructure we do not have the tools for analytics.

How to get started with Analytics?

The Fundamental Business Equation

P = R - C Profit = Revenue - Cost

Do you have a ten dollar problem or a million dollar problem?

VEV

Target and Pregnant Shoppers

• Problem:

- \succ How to get more people to shop at Target for <u>ALL</u> their daily needs.
- People have entrenched shopping routines!

• Solution:

- Promote Target's diverse retail selections.
- > People change their behavior with big events...
 - Graduation, Move, Marriage, Expecting Baby, ...

Canyou determine if a customer ís ' pregnant wíthout askíng them? YES!!

How to get started with Analytics

- Problem
 - Step 1: Define your problem; if possible quantify the impact.
- People
- Bits, Bytes & Terabytes (aka Data)
- Technology

Knowledge Transfer: who has the expertise?

The "Manager" (architect, engineer, doctor,...) tells the "Analyst" (carpenter, construction worker, nurse,...) WHAT to do, HOW to do it, VALIDATE the work. and VALIDATES the work.

The "Manager" tells the "Analyst" WHAT to do, at best occasionally HOW to do it, and rarely is able to

i.e. "Blue-prints" transfer the knowledge!

i.e. "Spreadsheets" do not transfer the knowledge!

Vision Care

VEV

How to get started with Analytics

- Problem
 - Step 1: Define your problem; if possible quantify the impact.
- People
 - Step 2: Send <u>ALL</u> your employees for Analytics training at the Ivey Academy.
- Bits, Bytes & Terabytes (aka Data)
- Technology

How to get started with Analytics

- Problem
 - Step 1: Define your problem; if possible quantify the impact.
- People
 - Step 2: Hire, Train, and *Retain* Analytical talent.
- Bits, Bytes & Terabytes (aka Data)
- Technology

The Fundamental Analytics Misperception

⊗Iv€y

IBM Human Resource Data;

source: kaggle.com, 30 July, 2020

ه ⊟	∂• & •∓							datasets_1067_1	925_WA_Fn-UseC_+	HR-Employee-Attritic	n.csv - Excel			•				- 6
File H		Page Layout Fo	rmulas Data	a Review	View Deve	loper Add-ins	: Power Pivot	Analytic Solve	r Data Mining	Q Tell me what	you want to do				°		Odegaard	, Fredrik
n 🔏 🗋	Calib	bri • 11	• A* A* =	= = %	📴 Wrap Tex	Gene	ral -	. 🛃	Normal	Bad	Good	Neutral	Calculation	1	in 🖹 🚺	∑ AutoSum ↓ Fill •	* 🛃 🖓 🔎	
aste	rmat Painter B	I <u>U</u> • ⊞ • <u>≺</u>	<u>≥-</u> - =		🗏 🧮 Merge &	Center - \$ -	% * 📩	Conditional Fo Formatting * T	rmat as Check Co able *	Explanate	bry Input	Linked Cell	Note	v In:	sert Delete Forma	t 🥑 Clear 🗸	Sort & Find & Filter * Select *	
Clipboa		Font	6	Ali	gnment	6	Number	G.			Styles				Cells	E	diting	
1	* I X V	√ f≈ Age																
Age A		ailyRati Departm Dist 1102 Sales		Educatio Emplo Life Scier	oye Employe Env	ronm Gender Ho 2 Female	M N puriyRa Jobinvoli J 94 3	O P oblevel JobRole J 2 Sales Exe	Q R obSatisf MaritalSt M 4 Single	5 T Aonthiyi Monthiyi Nu 5993 19479	mCom Over18 OverTi 8 Y Yes	x Y me PercentS: Perform 11	Z AA	AB rd StockOpt To	AC AD talWoiTraining1Wi	AE AF orkLife YearsAtC	AG AH YearsInC YearsSin-Ye	arsWithCurr
49 N 37 Y	lo Travel_Fr	279 Research 1373 Research	8 1	1 Life Scier 2 Other	1 2	3 Male 4 Male	61 2 92 2	2 Research 1 Laborato	2 Married 3 Single	5130 24907 2090 2396	1 Y No 6 Y Yes	23	4 4 8 3 2 8	0 1	10 3	3 10	7 1	7
33 N 27 N	lo Travel_Fr	1392 Research 591 Research	3 4	Life Scier Medical	1 5	4 Female 1 Male	56 3 40 3	1 Research 1 Laborato	3 Married 2 Married	2909 23159 3468 16632	1 Y Yes 9 Y No	11 12	3 3 8 3 4 8	0 0	8 3 6 3	3 8 3 2	7 3	0
32 N 59 N	lo Travel_R	1005 Rese 1324 Rese	-			-	_									2 7 2 1	7 3	6
30 N 38 N 36 N	lo Travel_Fr	1358 Resi 216 Resi	ar	וו ו	he	Da	ta	rev	eal	/evr	olaiı	אי ר	hv	SO	me	3 1 3 9	0 0	0
36 N 35 N 29 N	lo Travel_R	1299 Resi 809 Resi 153 Resi	-01			νu	^u		cui		Jian	I V V	יי	50	IIIC	3 5	4 0	3
31 N 34 N	lo Travel_R	670 Rest											L	\mathbf{c}		2 5	2 4	3
34 N 28 Y 29 N		103 Resi 1389 Resi		D	eol	pie	16	ave	an	00	the	rs s	tav			3 4 3 10	2 0 9 8	3 8
32 N 22 N	lo Non-Trav	334 Rest 1123 Researce		weatcar	1 22	4 Mate	30 4	1 Laborato	4 Divorced	2300 /024	1 T TES	10	· · · ·	u z	1 4	2 6 2 1	2 0 0 0	5 0
53 N 38 N 24 N	lo Travel_R	1219 Sales 371 Research 673 Research	2 3	Life Scier Life Scier Other	1 23 1 24 1 26	1 Female 4 Male 1 Female	78 2 45 3 96 4	4 Manager 1 Research 2 Manufac	4 Married 4 Single 3 Divorced	15427 22021 3944 4306 4011 8232	2 Y No 5 Y Yes 0 Y No	16 11 18	3 3 8 3 3 8	0 0	31 3 6 3	3 25 3 3	8 3 2 1	2
24 N 36 Y 34 N	es Travel_R	1218 Sales 419 Research	9 4	Life Scier	1 20 1 27 1 28	3 Male 1 Female	96 4 82 2 53 3	1 Sales Re 3 Research	1 Single 2 Single	4011 8252 3407 6986 11994 21293	7 Y No 0 Y No	23	4 2 8 3 3 8		10 4 13 4	2 4 3 5 3 12	3 0	3
21 N 34 Y	lo Travel_R	391 Research 699 Research	15 2	2 Life Scier 1 Medical	1 30 1 31	3 Male 2 Male	96 3 83 3	1 Research 1 Research	4 Single 1 Single	1232 19281 2960 17102	1 Y No 2 Y No	14	3 4 8 3 3 8	0 0	0 6	3 0 3 4	0 0 2 1	0
		4000 D			*	a.e					a 147 - 141 -			al al	ac a			-
								Yes	and	INO!								
1.	Defi	ine th	ne d	eep	er pi	oble	em c	or qu	estio	n.								
				-	-			-			1 *							
	\succ	insig	nt is	s ne	ver g	gaine	ea tr	om v	/acuc	ous q	uestic	ons.						
2.	Doc	ido b	014/	too	ncw	or th		octio		· anal	yze tl		obla	m				
<u>_</u> .	Dec	IUE II	UVV	ιU d	11200		e qu	19200		aiidi	yze li	ie hi	onie	111.				

- Remarkably, most often this involves simple analytics.
- Ensure you have The Data to enable step 2. 3.
 - Often valuable insight comes from combining different data sources

How to get started with Analytics

- Problem
 - Step 1: Define your problem; if possible quantify the impact.
- People
 - Step 2: Hire, Train, and *Retain* Analytical talent.
- Bits, Bytes & Terabytes (aka Data)
 - Step 3: Question \Rightarrow Solution Method \Rightarrow Data.
- Technology

Images from Google Image Search; 2020. No Copyright infringement intended.

The Data-Technology Arms Race

ௐIv£y

BCG & Sloan Management Review, Oct 2019 Winning with Al

VEY

How to get started with Analytics

- Problem
 - Step 1: Define your problem; if possible quantify the impact.
- People
 - Step 2: Hire, Train, and *Retain* Analytical talent.
- Bits, Bytes & Terabytes (aka Data)
 - Step 3: Question \Rightarrow Solution Method \Rightarrow Data.
- Technology
 - Step 4: Do <u>NOT</u> invest in technology to get started with Analytics; make due with what you got.

What prevents organizations from competing with analytics?

Poll 3

- 1. Lack of support from upper management
- 2. Conflicting internal incentives
- 3. Multiple stakeholders
- 4. Lack of resources
- 5. All of the above

Learning lessons from developing and using analytics

Chocolate consumption and Nobel Laureates

https://www.businessinsider.com/chocolate-consumption-vs-nobel-prizes-2014-4?r=US&IR=T

VEV

YVR Pre-Board Screening

Project outcomes

- Detailed process understanding
- Identified bottlenecks and evaluated configuration changes and work rules
- Established achievable service criteria
- Collected data on performance
- Methodology for forecasting demand and setting staff levels to meet service criteria
- Optimal staff allocation rules

VEV

Learning lessons

- Data
 - Collect, estimate and work with what is available. Determine which ones are critical.
- Multiple stakeholders
 - Air Canada, Airport Authority, security company, passengers.
- Validation (of analytical models)
 - Visual, numbers, absolute necessary for any analytical model/project
- C-level support
- Process mapping

Surgical block scheduling and wait list management for Fraser Health Authority

Learning lessons

- Need a champion (e.g., head of surgery on your side)
- Data issues
 - e.g., many different systems, not standardized, not available, takes month to get...
- Multiple stakeholders with different incentives
- Need to show no one will be worse-off (and hopefully all will be better-of)

Logistics Planning and Optimization for a Canadian Beverage Manufacturer

42

VEV

https://www.inderscienceonline.com/doi/abs/10.1504/EJIE.2019.098515

Learning lessons

- Analytics can be most effective at the strategic level
- User friendly/easy to use tools work
- Proof of concept
- Validation with subject experts
- Need to work closely with decision makers and users

See You Next Time