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ELECTRICITY MARKET Energy Reform Challenges 
A core challenge for all electricity systems is between monopoly provision and market operations.  
Electricity market design depends on critical choices.  There is no escape from the fundamentals. 
 

Integrated Monopoly 
 Mandated 
 Closed Access 
 Discrimination 
 Central Planning 
 Few Choices 
 Spending Other People’s Money 
 Average Cost Pricing 

Competitive Markets 
 Voluntary 
 Open Access 
 Non-discrimination 
 Independent Investment 
 Many Choices 
 Spending Your Own Money 
 Marginal Cost Pricing 

 
 

A Key Market Design Objective 
Supporting the Solution: Given the prices and settlement payments, individual optimal behavior is 
consistent with the aggregate optimal solution. 
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ELECTRICITY MARKET Focus on Balancing Markets First 
The solution to open access and non-discrimination inherently involves market design.  Good 
design begins with the real-time market and works backward.  A common failure mode starts with 
the forward market, without specifying the rules and prices that would apply in real time.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

False Starts for the Electricity Market

Operations

Rules &
Pricing

Scheduling &
CommitmentInvestment Balancing

Day, Week, Month, ...
Ahead

Real-Time
Dispatch & Balancing

Begin 
Design 
Here

XBegin 
Design 
Here

Market expectations determine incentives.  Start at the end.
Work backward, not forward, in setting market design.
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ELECTRICITY MARKET The Last Should Be First 
All energy delivery takes place in the real-time market.  Market participants will anticipate and make 
forward decisions based on expectations about real-time prices.   
 

 Real-Time Prices:  In a market where participants have discretion, the most important prices are 
those in real-time.  “Despite the fact that quantities traded in the balancing markets are generally 
small, the prevailing balancing prices, or real-time prices, may have a strong impact on prices in the 
wholesale electricity markets.  … No generator would want to sell on the wholesale market at a price 
lower than the expected real-time price, and no consumer would want to buy on the wholesale 
market at a price higher than the expected real-time price.  As a consequence, any distortions in the 
real-time prices may filter through to the wholesale electricity prices.”  (Cervigni & Perekhodtsev, 2013) 

 Day-Ahead Prices:  Commitment decisions made day-ahead will be affected by the design of day-
ahead pricing rules, but the energy component of day-ahead prices will be dominated by 
expectations about real-time prices. 

 Forward Prices:  Forward prices will look ahead to the real-time and day-ahead markets.  Although 
forward prices are developed in advance, the last prices in real-time will drive the system. 

 Getting the Prices Right:  The last should be first.  The most important focus should be on the 
models for real-time prices.  Only after everything that can be done has been done, would it make 
sense to focus on out-of-market payments and forward market rules. 
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LOCATIONAL  SPOT  PRICE  OF  "TRANSMISSION"

Pa = 51

Pc = 55

Pb = 66

Price of "Transmission" from A to B = Pb - Pa = 15
Price of "Transmission" from C to A = Pa - Pc = -4

Price differential =

Marginal losses
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ELECTRICITY MARKET Pool Dispatch 
An efficient short-run electricity market determines a market clearing price based on conditions of 
supply and demand balanced in an economic dispatch.  Everyone pays or is paid the same price.  
The same principles apply in an electric network. (Schweppe, Caramanis, Tabors, & Bohn, 1988) 
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ELECTRICITY MARKET A Consistent Framework 
The basic model covers the existing Regional Transmission Organizations in the United States and 
is expanding through the Western Energy Imbalance Market.  (www.westerneim.com) 
 (IRC Council and CAISO maps) 
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ELECTRICITY MARKET Energy Market Design 
The expansion of intermittent sources and the rise in special subsidies is seen as a threat to 
efficient electricity market design.  
 
 “The supply of intermittent wind and solar generation with zero marginal operating cost is increasingly 
rapidly in the U.S. These changes are creating challenges for 
wholesale markets in two dimensions. Short term energy and 
ancillary services markets, built upon mid-20th century models of 
optimal pricing and investment, which now work reasonably well, 
must accommodate the supply variability and energy market 
price impacts associated with intermittent generation at scale. 
These developments raise more profound questions about 
whether the current market designs can be adapted to provide 
good long-term price signals to support investment in an efficient 
portfolio of generating capacity and storage consistent with 
public policy goals. … Reforms in capacity markets and scarcity 
pricing mechanisms are needed if policymakers seek to adapt 
the traditional wholesale market designs to accommodate 
intermittent generation at scale. However, if the rapid growth of 
integrated resource planning, subsidies for some technologies 
but not others, mandated long term contracts, and other 
expansions of state regulation continues, more fundamental 
changes are likely to be required in the institutions that determine 
generator and storage entry and exit decisions.”  (Joskow, 2019) 
(emphasis added) 
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ELECTRICITY MARKET Pool Dispatch 
An efficient short-run electricity market determines a market clearing price based on conditions of 
supply and demand balanced in an economic dispatch.  Everyone pays or is paid the same price.  
The thought experiment of a no-carbon/zero-variable-cost, green energy supply reveals that the 
basic efficiency principles still apply.  The same principles apply in an electric network. (Schweppe et al., 
1988)  Storage will be important, but does not change the basic design analysis.   (Korpås & Botterud, 2020) 

 
 
 
 
 
 
 
 
 
 
 
 

A key feature would be to increase the importance of scarcity pricing.  ERCOT adopted an 
Operating Reserve Demand Curve in 2014. (Hogan, 2013)  PJM has proposed a series of reforms for 
energy price formation, motivated in part by the impact of increased penetration of intermittent 
renewable resources.  (PJM Interconnection, 2017)  (PJM Interconnection, 2019)  (Federal Energy Regulatory Commission, 2020b) 
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ELECTRICITY MARKET ERCOT Scarcity Pricing 
ERCOT launched implementation of the ORDC in in 2014.  The summer peak is the most important 
period.  The first five years of results show recent scarcity of reserves and higher reserve prices.   
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ELECTRICITY MARKET ERCOT Scarcity Pricing 
After introduction of the ORDC scarcity prices and the contribution to Peaker Net Margin were low 
for several years, but this changed in 2019.1  The PNM target level is $80,000-$95,000/MW-Yr. 
(Potomac Economics, 2019, p. 112) 
 

 

1  Beth Garza, “Independent Market Monitor Report,” Potomac Economics, ERCOT Board of Directors Meeting Presentation, October 8, 
2019. 
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ELECTRICITY MARKET ERCOT Scarcity Pricing 
An ERCOT review of the Summer of 2019 underscored that scarcity pricing was consistent with 
performance of the system.2   

 
Notably, high prices occurred at the right time, and were not socialized through capacity market 
charges spread over all load.  

 
2  Dan Woodfin and Carrie Bivens, “Summer 2019 Operational Review”, ERCOT Board of Directors Meeting Presentation, October 8, 2019. 
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ELECTRICITY MARKET Augmented ORDC 
A conservative assumption addressed at reliability would be to increase the estimate of the loss of 
load probability.  A shift of one standard deviation would have a material impact on the estimated 
scarcity prices.  The choice would depend on the margin of safety beyond the economic base.  
Texas applied this approach in 2019 and 2020 by implementing 0.25 standard deviations shifts. 
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ELECTRICITY MARKET Price Formation 
The extension of market design to distribution systems seems straightforward in principle.  
(Caramanis, Bohn, & Schweppe, 1982)  But in practice the challenges will be different.  
 
 

 High Voltage Grids (Wholesale Markets) 
 

o Small Losses 
o Simpler Voltage Control Challenges 
o Market Design Assumes Sufficient Reactive Power 
o Network Interactions with Thousands of Locations 
o Workable Approximations 

 DC Load Model, at least for local adjustments 
 Nomograms and Interface Constraints 
 Centralized Coordination 
 Long-history with Optimization Models 
 “Dispatch-Based Pricing” Models Accommodate Operator Interventions 

 
 Low Voltage Grids (Distribution Markets) 

 
o Larger Average and Marginal Losses 
o Voltage Control a Central Problem 
o Largely Radial Systems with Millions of Devices 
o Moving from Passive Revelation to Active Participation 
o Less Operating Experience with Optimization Models 
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ELECTRICITY MARKET Distributed Energy Resources 
The Federal Energy Regulatory Commission set out a framework for DER.  (Federal Energy 
Regulatory Commission, 2020c)  Some of the market design challenges (an incomplete list): 
 

 Product Definition 
o Demand Response vs.  Demand Participation 
o Stacked Values 

 Price Equilibrium and Energy Value 
 Additive or Alternatives 
 Carbon Pricing (Federal Energy Regulatory Commission, 2020a) 

 Coordination 
o Centralized 
o Decentralized  
o Role of Aggregators 
o Hybrid Models (Gross Pool versus Net Pool Debate) 
o Operator Interventions 

 
 Efficiency (Optimization) and Pricing 

o Dispatch Signals and Settlement Prices 
o Non-Convexities 

 Commitment Decisions 
 Switching Decisions 
 AC Models 

o Uplift (Side Payments and ELMP)  (Gribik, Hogan, & Pope, 2007)  (Chao, 2019) 
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ELECTRICITY MARKET Distributed Energy Resources 
The Federal Energy Regulatory Commission set out a framework for DER.  (Federal Energy 
Regulatory Commission, 2020c)  Some of the market design challenges (an incomplete list), 
continued: 
 

 Intertemporal Optimization and Efficiency 
o Rolling Update of Dispatch with Look Ahead 
o With Convex Conditions and No Uncertainty: Dispatch Signals = Settlement Prices  
o Non-convexities from Commitment Decisions  

 Dispatch Signals Differ from Settlement Prices (ELMP) 
 Sunk Costs Matter 

o Convexity but with Uncertainty and Intertemporal Updates (Hua, Schiro, Zheng, Baldick, & 
Litvinov, 2019)  (Hogan, 2020) 
 Ramping Constraints 
 Dispatch Signals Differ from Settlement Prices 
 Sunk Costs Matter  
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ELECTRICITY MARKET Distribution Price Formation 
Then New York initiative on “Reforming the Energy Vision” stimulated wide discussion of reforms 
for pricing in the distribution system.   
 

“REV calls for facilitation of a market for DER products and services. This paper describes how 
New York State could create a new power market for DER products at the distribution level. 
DER would sell three core electric products in that market: real energy, reactive power, and 
reserves. Real energy and other products that derive from it have the greatest economic value 
because customers consume those products directly. Distribution Utilities require reactive 
power to maintain voltage within an acceptable band that prevents damage to voltage sensitive 
equipment such as drive motors, compressors and many electronic devices. Reserves 
represent a commitment to deliver energy in the future. These core products can be bundled or 
unbundled, sold day ahead or in real time, or aggregated individually in time and space. In 
addition, they may be valued and / or sold forward as a basis for the calculation of the avoided 
cost of future capital investments. 
 
The design of this new market would draw upon the extensive experience with electric market 
design at the wholesale level. A key lesson from that experience is the importance of getting the 
prices right. Prices in this new market should reflect the value of core electric products from 
DER as a function of the time at which DER produces those products and the location at which 
DER produces them. This approach, referred to in this paper as more granular pricing, would 
identify where, when and how DER could provide significant value through reduction in system 
operating cost or where their ability to respond reduces the need for additional capital 
investment. This value is incremental to the environmental or other policy benefits of DER.” 
(Tabors, Parker, Centolella, & Caramanis, 2016) (emphasis added) 
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ELECTRICITY MARKET Distributed Energy Resources 
Extension of the “transactive” market to the distribution system moves from thousands of 
locations on the (a) high voltage grid to millions of locations and devices that must coordinate on 
(b) the lower voltage distribution system.   

Transmission     Distribution  
 
 
 
The prices expand from 
treating real power and 
reserves to include the 
important reactive power 
effects.  In principle, the 
numbers of prices, 
quantities and constraints 
expand by several orders 
of magnitude. 
 
 
 
A computational challenge for tomorrow: “This paper presents a distributed, massively parallel 
architecture that enables tractable transmission and distribution locational marginal price (T&DLMP) 
discovery along with optimal scheduling of centralized generation, decentralized conventional and flexible 
loads, and distributed energy resources (DERs).  …[an] architecture intended to realize Fred Schweppe’s 
1978 visionary “power systems 2000 …”. (Caramanis, Ntakou, Hogan, Chakrabortty, & Schoene, 2016)  
See also (Kraning, Chu, Lavaei, & Boyd, 2013) 
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