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A B S T R A C T   

Using monthly account level data for over 27,000 households between 2007 and 2014, this study evaluates a 
revenue neutral municipal electricity conservation program. Rebates for the purchase of energy efficient ap-
pliances were financed via a small surcharge on high consuming households. The results demonstrate that the 
program mainly transferred money between residents with almost no effect on electricity consumption. Using 
variation in the timing of the rebate checks, none of the energy efficiency incentives yielded a statistically or 
economically meaningful reduction in electricity consumption compared with a counterfactual where no rebate 
was offered. Using a bunching estimator and exploiting changes in behavior around the high consumption 
threshold, a small reduction in electricity consumption is attributable to the surcharge, suggesting that prices are 
better than subsidies at reducing electricity consumption. Overall, the change in behavior attributable to the 
electricity conservation program is small, supporting recent evidence that many energy efficiency programs 
underperform in real-world settings.   

1. Introduction 

Most research on energy conservation programs focus on large scale, 
tax-financed initiatives launched at the national or state level (Boom-
hower and Davis, 2014; Allcott and Greenstone, 2017).1 Yet, electricity 
regulators often require local utilities to pursue similar efficiency pro-
grams, with programming targeted at local customers.2 Regulated util-
ities have different constraints than governments: utilities often have 
small footprints and cannot fund programming through the tax base. 
Utility-sponsored conservation must be underwritten through higher 
rates or surcharges levied on ratepayers. Further, because utilities 
cannot fund conservation programs via taxes, they often design 
self-financed or revenue neutral schemes. Revenue neutrality means that 
there are two instruments influencing electricity consumption: rebates 
are offered for, say, the purchase of new energy efficient appliances, 
with the subsidies funded via fees added to ratepayers’ bills. Subsidies 
tend to be coarse and are limited to the purchase of a pre-determined 

class of durables that indirectly influence electricity consumption 
behaviour. Fees, in contrast, directly target electricity consumption, 
thus resemble prices and Pigouvian regulation. Of course, while sur-
charges fund the sought-after investment in energy efficiency (e.g., the 
purchase of new appliances), these fees may inadvertently introduce a 
wedge in the electricity market, creating deadweight loss. 

This study uses monthly account-level data from over ten years to 
investigate the savings generated by a revenue neutral municipal elec-
tricity conservation program in Canada. The results contribute to and 
accord with the growing literature on incentivizing investments in en-
ergy efficiency but are among the handful focused on small-scale pro-
gram design with a revenue neutrality constraint. The main conclusions 
are that surcharges reduce household electricity demand, while sub-
sidies for the purchase of energy efficient appliances have few 
economically meaningful effects on consumption. Using the Govern-
ment of Canada’s current benchmark social cost of carbon (SCC) sug-
gests that the program is socially welfare-enhancing, but overall gains 

☆ Funding and data for this paper were generously provided by the City of Medicine Hat, Alberta, Canada. 
E-mail address: bschaufele@ivey.ca.   

1 Energy conservation programs are popular with utilities and governments across North America. Between 1994 and 2012, the US spent more than $34 billion on 
energy conservation (Boomhower and Davis, 2014), including $17 billion allocated in the 2009 Recovery and Reinvestment Act (Allcott and Greenstone, 2017). The 
experience is similar in Canada with the federal government committed to “ramping up its effort to encourage building owners to invest in energy retrofits” 
(McCarthy, 2017).  

2 This may be because governments are downloading responsibility for energy conservation to utilities or, alternatively, utilities may possess an informational 
advantage and are better able to target programs according to local or regional characteristics, achieving improved outcomes. Further, the stated objectives of these 
programs are usually two-fold: (i) to improve environmental outcomes and (ii) to lower the future costs of energy infrastructure. 
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are tiny and hinge on the assumed value for this SCC parameter. In other 
words, even though the subsidies did not change household electricity 
consumption relative to a counterfactual scenario where the program 
did not exist, the second instrument, the one used to finance the appli-
ance rebates – i.e., the surcharge on high consuming households – did 
ensure that total benefits outweighed total costs. 

Despite the popularity of energy efficiency programs, a puzzle 
known as the “energy efficiency gap” persists (Allcott and Greenstone, 
2012).3 According to the energy efficiency gap literature, we should 
observe substantially more investment in energy efficiency than we 
actually do. The basis for this claim rests on the difference between the 
projected cost savings from energy efficient investments and the 
observed investments in the market: households should be more willing 
to invest in energy efficiency than they are. The basic story is as follows. 
Households should invest in energy efficiency, for example, by pur-
chasing more efficient appliances. Of course, these investments are 
costly for the household – high energy efficiency appliances cost more 
than low efficiency alternatives – yet the premium paid for energy ef-
ficiency purportedly reduces lifetime energy consumption by an amount 
that is greater than the initial outlay (i.e., price differential with a less 
efficient model). Because total household energy consumption declines, 
utility bills decline and private investments in energy efficiency pay for 
themselves. But this behavioral response is typically not observed. 
Households appear to underinvest in energy efficiency and, hence, there 
is a “gap” in energy efficiency outlays. 

The ostensible missing investment in energy efficiency has implica-
tions for social welfare. Generation of electricity produces environ-
mental externalities such as emissions of carbon dioxide (CO2e) and 
other local pollutants. Climate change and local air pollution have real 
economic costs that are borne by citizens and governments. As total 
energy consumption declines, environmental quality and human health 
improves. Stated differently, as household energy efficiency improves, 
less total energy is needed. So, when households fail to invest in energy 
efficiency, not only do they forego private benefits of lower energy bills, 
but social benefits such as improved health and environmental quality 
also fail to materialize. 

These unrealized social benefits have prompted utilities (and gov-
ernments) to intervene in the energy efficiency market in an attempt to 
promote greater investment. These initiatives take many forms. The 
program studied in this paper is known as Hat Smart and was created by 
the City of Medicine Hat, a municipality of approximately 60,000 peo-
ple, located in the Canadian province of Alberta. Originally launched in 
2008, Hat Smart was viewed as among Canada’s “most successful 
municipally offered program of its kind” (Row and Welk, 2011, pg.7) 
and, as of December 2015, had distributed over $4 million in energy 
efficiency incentives via 14,000 rebates aimed primarily at reducing 
electricity and natural gas consumption (Hat Smart, 2017).4 Several 
features make Medicine Hat a unique context to study. First, the local 
utility is wholly owned and managed by the municipal government. This 
is atypical in Canada, especially in Alberta, a province with a 
market-focused electricity sector. Second, the climatic conditions of 
Medicine Hat are uncommon in Canada. Medicine Hat is among the 
hottest and driest cities in the country and air conditioning is pervasive 
in summer, while forced-air natural gas furnaces are almost the 

exclusive source of heating in winter. This means that there is a large 
peak in summer electricity demand. Finally, Hat Smart was a revenue 
neutral program. Subsidies for energy efficiency rebates were entirely 
financed through a surcharge levied on high consumers of electricity. 

Most analyses of energy efficiency programs use engineering esti-
mates to calculate energy savings. Projected energy savings are derived 
from simulation models or tests run in laboratory settings. Unfortu-
nately, engineering estimates frequently fail to account for important 
real-world features. Technologies may be installed incorrectly and 
households’ behaviour often changes as a result of incentives (Fowlie 
et al., 2018). A common example of an unintended behavioural change 
is colloquially known as the “beer fridge problem”: offering a rebate for 
energy efficient refrigerators often increases, rather than reduces, elec-
tricity usage because households continue to operate their old unit – i.e., 
households buy a new primary refrigerator, but keep their old unit as a 
secondary, “beer-fridge” (thus, the net effect is simply adding a new 
refrigerator to the grid). Upgrading is another means through which 
behaviour and incentives interact. Consumers may purchase larger or 
feature-enhanced appliances because the incentive makes these cheaper 
to acquire (Houde and Aldy, 2017). Appropriately evaluating 
utility-managed energy conservations programs such as Hat Smart re-
quires measuring combined technological plus behaviour changes. 

Until recently, surprisingly little was known about the actual effec-
tiveness of utility-based conservation programs in the real-world (All-
cott and Greenstone, 2012). Research has emerged over the past decade 
suggesting that it is challenging to obtain many of the promised benefits 
of energy efficiency. Fowlie et al. (2018), for instance, evaluate a large 
weatherization incentive program in Michigan. They find that engi-
neering models over-estimate actual energy savings by more than 2.5 
times and that these over-estimates cannot be attributed to rebound 
effects or upgrading. Davis et al. (2014) look at appliances. They eval-
uate a large-scale appliance replacement program that helped 1.5 
million Mexican households purchase new energy efficient refrigerators 
and air conditioners (informally, referred to as “Cash for Coolers”). 
Using household electricity billing records, similar to those used in this 
study, Davis et al. find replacing a household’s refrigerator reduced 
electricity consumption by 11 kWh per month. In contrast, the air 
conditioner incentives led to an increase in electricity consumption of 6 
kWh per month, with even larger increases during the summer (up to 20 
kWh).5 Moreover, they explicitly state that their estimates are “consid-
erably less than what was predicted ex ante by the World Bank and 
McKinsey based on engineering models that ignore behavioral re-
sponses. The World Bank study, for example, predicted savings for re-
frigerators that were about four times larger” (p. 208). Examining the 
same Cash for Coolers program Boomhower and Davis (2014) find that 
between 69 and 84% of Mexican households were inframarginal, 
meaning that they would have purchased a new, energy efficient fridge 
even without the subsidy. The subsidy was, in other words, mostly un-
necessary to achieve improved energy conservation. Rivers and Shiell 
(2016) provide one of the few studies of a Canadian energy efficiency 
program. Studying incentives to replace forced-air natural gas furnaces 
between 2007 and 2011, they find that more than 70% of replacements 

3 There is debate, including in Allcott and Greenstone (2012), as to whether 
the energy efficiency gap exists. An emerging literature, including several pa-
pers discussed below, suggest that it may be smaller than originally believed.  

4 This $4 million is not exclusively for the electricity version of Hat Smart 
studied in this paper. In addition to the electricity policy, a separate program 
for natural gas conservation existed. The $4 million sums total spending on 
energy efficiency programs in the city. This includes funds allocated to 
conserving natural gas consumption and other programs initiated by the 
Province of Alberta. Only the electricity portion of the program is evaluated in 
this paper. 

5 Several features differentiate Mexico’s Cash for Coolers program from Hat 
Smart. First, it was a nation-wide program, which meant that fixed adminis-
trative costs could be spread over a large number of participants. Second, sellers 
needed to verify that the existing appliances met certain requirements. In order 
to qualify for rebates, for example, the old refrigerator or air conditioner 
needed to be operational and at least 10 years old. Further, the retailer needed 
to remove the old appliance at the time of replacement (old appliances were 
permanently destroyed). Size restrictions were also imposed and households 
could only redeem one rebate – i.e., for either a fridge or an air conditioner. 
Nonetheless, despite these restrictions, Davis et al. emphasize that “increases in 
appliance size and appliance features (e.g., through-the-door ice) worked to 
substantially offset the potential reductions in electricity consumption” (p. 
208). 
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would have occurred without any subsidy or tax credit and that middle 
and high-income households were more likely to receive benefits 
compared with lower income families. Finally, following the financial 
crisis, the US Government helped state governments subsidize house-
holds’ purchases of energy efficient appliances through the Energy 
Efficient Appliance Rebate Program. Houde and Aldy (2017) evaluate 
this program and demonstrate that approximately 90% of consumers 
who claimed a rebate did not contribute to an improvement in energy 
efficiency. New refrigerator, clothes washer and dishwasher purchases 
led to an expected improvement in energy efficiency of 2 kWh per year 
at most. Rebates mainly contributed to appliance upgrading, where 
households purchased a larger appliance or one with additional fea-
tures.6 Further recent evidence includes Qui and Kahn (2019), research 
that examining building retrofits in Phoenix, and Zha et al. (2020), a 
study evaluating appliance energy label program in China. 

This emerging consensus on the efficacy of energy conservation 
programs appears pessimistic. Still, a unique feature of Hat Smart is that 
it is revenue neutral: all funds allocated towards energy efficiency were 
collected from a small per kwh surcharge on high electricity demanders. 
Indeed, it turns out that this surcharge generated energy savings 
whereas the rebates did not. That is, the fee led to a reduction in the 
quantity of electricity demanded, but spending on more efficient ap-
pliances had no discernable effect. This arises because the demand for 
electricity is responsive to price, while appliance subsidies are non- 
additional. Notwithstanding these results, the response to the sur-
charge is best characterized as trifling: in a city of 60,000, roughly 536 
MWh were conserved over 9 years. This is approximately 1 kWh per 
person-year.7 And to be clear, the reason that the surcharge generated 
more electricity conservation is almost entirely because there are 
virtually no statistically measurable conservation benefits from the re-
bates. While several point estimates suggest minor energy savings, the 
confidence intervals are wide. Higher prices appear to be a more 
effective conservation instrument than rebates, even in markets, such as 
electricity, where demand is extremely inelastic. 

Ultimately, the results of this study show two things. First, the rev-
enue neutral Hat Smart served to transfer money between households 
without generating many consequential costs or benefits. Second, 
conclusion offers several potential modifications that can be applied to 
this class of programs. Yet, the main lesson from this analysis is that 
prices appear to be more effective than subsidies for influencing energy 
conservation. 

2. Program structure and data 

Hat Smart was launched in 2008. Originally designed in conjunction 
with a similar scheme offered by the Canadian province of Alberta, the 
first wave of rebate recipients obtained funding from both the city and 
province. With only minor tweaks, the basic structure of Hat Smart 
remained constant over the seven years studied. 

Hat Smart is a revenue neutral energy efficiency program. It offers 
rebates to ratepayers for the purchase of a pre-defined set of efficiency 
investments. Specifically, it helps households “to make better choices 
regarding upgrades to their homes” (Hat Smart, 2017). Predominantly, 
this involves rebating a fixed amount of the purchase price of new air 
conditioners, refrigerators, dishwashers and clothes washers. Hat Smart 
was an energy conservation program, whose objective – and the pur-
ported benefits of the program – was to reduce electricity consumption. 

Rebates were financed via an “Environmental Efficiency Charge” 
(ECC). The ECC is a per kilowatt-hour (kWh) surcharge levied on billable 
electricity consumption above a 950 kWh threshold. That is, if an ac-
count holder consumed, say, 1100 kWh within a billing period, they 
would pay the monthly rate for the first 950 kWh of consumption and 
then the monthly rate plus the ECC on the remaining 150 kWh. The ECC 
did not vary during the sample period, equalling $0.0074/kWh 
throughout.8 

Several comments on the rebates are needed. First, the funds 
collected from the ECC were placed into a pool and paid out according to 
a fixed budget. Once the annual rebate budget was exhausted, residents 
could no longer claim any money; thus, there was an advantage to trying 
to obtain a rebate early in the calendar year. Funds on average ran out in 
September and citizens were informed of this via notices in the local 
newspaper and in their bills. Second, residents were not required to 
verify that they either disposed of their old energy inefficient appliance 
or acquired a model with enhanced efficiency. Rebates were given as 
long as the newly purchased model had an Energy Star rating. Third, 
rebates were promptly paid, usually within the month. Fourth, the city 
advertised the rebate scheme in both household electricity bills and in 
the local newspaper, so residents were largely aware of the plan. Finally, 
not all rebates were available in all years. For example, incentives for 
efficient clothes washers were available during the initial phase of Hat 
Smart but not in subsequent years. 

The account-level data used in the study cover every household in 
the city from 2007 through 2014.9 Information was provided on the 
billed electricity consumption for all addresses in the city. Except for the 
ECC, there is no cross-sectional variation in prices. Rates do vary 
intertemporally, however. Households are billed ten times a year; so, 
while the billing cycle does not precisely correspond to months, the 
period of observation is referred to as a month for convenience. Like-
wise, the terms household, account and consumer are used inter-
changeably. During this period all households in the city were also 
converted from analogue to digital metering. These conversions 
occurred over several years and it is unknown when a specific household 
switched. This conversion has implications for the analysis, as prior to 
the digital meters, meter-readings were completed twice a year and 
monthly bills were based on estimated electricity consumption in the 
given month. Information is not available for the month in which the 

6 Often these larger fridges, dishwashers or clothes washers had a better ef-
ficiency rating per unit of appliance services (e.g., per cubic meter of fridge 
space), but actually required more total electricity when compared with the 
counterfactual purchase (i.e., the most likely appliance that would have been 
purchased if there was no subsidy).  

7 Only a subset of households received rebates or paid the surcharge, so this 
estimate under-estimates the treatment effect on treated units. 

8 ECC charges were clearly described on all customer bills and paper bills 
were the only type of billing used during this period. Inserts described the 
program and its funding structure. Because bills continued to be mailed to all 
customers, households needed to open and examine the envelopes in order to 
pay the correct amounts. This suggests that residents were aware of the sur-
charge and HatSmart program. Further, city administrative staff strongly 
believed that the program was well-known and understood. Despite these re-
assurances however, it is difficult to definitively claim or disclaim whether 
households paid attention to or knew about the ECC and HatSmart. Residual 
lack of awareness is, on its own, a lesson for program designers.  

9 All data were provided under a strict confidentiality agreement with the 
City of Medicine Hat. 
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meters were read.10 

Table 1 provides several summary statistics. During any given 
month, there are roughly 27,000 accounts billed by the city. The sample 
used in the regression analysis varies, but there are over 2.2M obser-
vations in the data. The average monthly consumption equals 663.24 
kWh, and after trimming the top and bottom one percent, had a mini-
mum of 36 kWh and a maximum of 2,216 kWh. The ECC surcharge was 
paid by 20% of households in any given month. Four types of rebates are 
examined.11 The table shows the conditional summary statistics (i.e., 
conditional on receiving a rebate). An average rebate of $198 was given 
for air conditioners, of which the vast majority of cheques were for $200. 
Only a small set of households received $50 rebates for the purchase of a 
window air conditioner unit. All recipients of dish washer cheques 
received an identical $100. There is no variation in this amount. Like 
with air conditioners, most recipients of refrigerator cheques received 
$200, with a small group getting $100. Thus, the mean refrigerator 
subsidy equals $198. The largest variation in rebate amounts is for 
clothes washers as this program coincided with the provincial program. 
The average clothes washer rebate is $178, with a minimum of $75 and a 
maximum of $775. 

3. Conceptual framework and empirical methodology 

The conceptual framework and empirical methodology used to 
evaluate Hat Smart is discussed in two parts. First, the method used to 
infer benefits from rebate payments is discussed. The economic impli-
cations of the surcharge are then reviewed. It is important to emphasize 
that I am seeking to measure the effect of incentive payments and sur-
charges on electricity consumption behaviour. As in Houde and Aldy 
(2017), I do not quantify welfare from new or upgraded appliances. 
Consumers likely obtain additional utility from the purchase of new 

appliances: there are benefits from owning a new and improved refrig-
erator or dishwasher. While these benefits are critical for the cost-benefit 
analyses of tax-financed energy efficiency programs, it is less obvious 
that they should be included in the evaluation of self-financed programs 
initiated by regulated utilities. Utilities are urged to develop energy 
efficiency programs to conserve electricity consumption and improve envi-
ronmental outcomes. Their focus is electricity consumption and the 
associated environmental spillovers. The program’s focus is not general 
household well-being. As a result, for this analysis, the prospective 
benefits from the mere purchase of new appliances is set aside and 
attention is exclusively on derived electricity demand. 

3.1. Evaluating the rebates 

The stated goal of utility-sponsored efficiency programs is electricity 
conservation. Conceptually, therefore, the benefits of conservation 
programs are straightforward. The objective of programs such as Hat 
Smart is to reduce electricity consumption by shifting a household’s 
monthly (derived) electricity demand curve to the left and reducing how 
much electricity a household consumes. This is how the benefits are 
ultimately measured: as the effect of the rebate on electricity con-
sumption. Still, it is worth framing how a subsidy influences household 
decision-making, by facilitating this reduced demand for electricity. 

This conceptual discussion proceeds in two steps. First, rebates make 
appliances cheaper, so this influences how purchasers trade-off appli-
ance attributes. The discussion follows Houde and Aldy (2017), illus-
trating, in Fig. 1 via a conventional indifference curve-budget line graph, 
the range of potential outcomes. Second, how rebates yield gains in 
surplus is outlined from the perspective of the electric utility. The 
marginal benefits of energy efficiency from both a private and social 
perspective are considered, holding constant other appliance attributes. 
Fig. 2, shown below, isolates how and why the benefits from a subsidy 
for the purchase of an energy efficient appliance arise and shows how a 
lack of targeting can lead to sizable inframarginal transfers. 

Households trade-off attributes when purchasing new appliances. 
This trade-off is shown in Fig. 1. For simplicity, assume appliances are 
only described by two characteristics, size and efficiency. Households 
choose an appliance with a mix of size and efficiency such that their 
indifference curve is tangent to their budget constraint. In panel (a) of 
Fig. 1, a household’s pre-rebate optimal appliance choice is shown as 
point A. Panel (a) also shows how rebates change the household’s 
appliance decision. An appliance-level rebate, like those used in Hat 
Smart, shifts the household’s budget constraint rightward. The house-
hold reoptimizes across appliance attributes and selects a different 
appliance, one that places them on a higher indifference curve. In panel 
(a), the post-rebate optimal appliance choice is shown by point B. At B, 
the appliance obtained by the household is larger as B sits above A. It is 
also more energy efficient. In this graph, the improvement in efficiency 
is measured as the horizontal distance between A and B. A sufficiently 
large horizontal shift means that the flow of services provided by the 
appliance at B is likely to use less electricity than appliance at point A, 
even though it is larger. 

Panel (a) can be contrasted with the situation in panel (b). Panel (b) 
replicates the subsidy on energy efficiency but with a markedly different 
outcome. Households in panel (b) start at a pre-subsidy point C. The 
rebate, as in panel (a), shifts the budget line, moves households to a 
higher indifference and makes them better off. However, in panel (b), 
the shape of the indifference curves yields a different prediction. In 
panel (b), the rebate has a much smaller influence on energy efficiency. 
As households move from C to D, they largely maintain the same level of 
efficiency but convert the additional savings, the rebate, into larger 
appliances, a phenomenon known as upgrading. At point D, households 
purchase a larger appliance with roughly the same level of energy effi-
ciency as the option at point C. The larger appliance makes the house-
hold better off but does not meaningfully reduce electricity demand or 
contribute to the utility’s objective. Of course, whether the situation in 

Table 1 
Summary statistics.   

Mean Std. Dev Min. Max. 

Electricity consumption (kWh/month) 663.24 392.87 36.00 2216.00 
Share of households paying ECCa 0.20 0.40 0.18 0.24 
Rebates ($) 
Air conditioners 198.01 17.16 50 200 
Dishwashers 100 – 100 100 
Refrigerators 198.25 13.11 100 200 
Clothes washers 178.18 26.50 75 775  

a Minimum and maximum refer to monthly values. 

10 This has the potential to introduce measurement error as estimated elec-
tricity consumption of household i in period t, yit, is a noisy measure of true 
electricity consumption, ŷit . Using estimated meter readings implies that yit =

ŷit + vit , where the components of vit include a time fixed effect, τt , and mea-
surement error, eit : vit = τt + eit . HatSmart incentives, the treatment variable, 
are measured without error, so imprecisely estimated standard errors due to 
classical measurement error would be the first-order effect. A second concern 
relates to unbiased estimation of the parameter of interest. The potential for 
measurement error requires me to assume E[uit |HatSmartIncentiveit ] = 0, where 
(1) uit is the error term in the main regression model, presented in section 3.2 
and (2) uit = eit + ψ it where ψ it , and the error associated with main regression 
(see section 3.2 for further discussion) and is eit the error from the potentially 
mismeasured electricity consumption (follows from linearity of the expectation 
operator). In other words, I must assume is that both errors are uncorrelated 
with HatSmart incentives. Any violations of this assumption are likely to 
attenuate the estimated parameters of interest.  
11 As mentioned, a parallel natural gas conservation program, which was 

similar but not identical to the electricity conservation program, was offered at 
the same time as Hat Smart. Rebates for windows, insulation and furnaces were 
offered. Even though reducing electricity consumption was not their main 
objective, these rebates, those offered within the natural gas program, were also 
examined in the context of electricity conservation. No meaningful results were 
found. 
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panel (a) or panel (b) is likely to prevail is an empirical question. 
Fig. 1 helps convey how rebates for appliances influence purchase 

decisions through a consumer choice mechanism, yet this study is 
interested in evaluating the impacts of changes in actual electricity 
consumption at the utility level. To this end, I investigate the direct costs 
and benefits of subsidies on electricity consumption. Utility-sponsored 
programs such as Hat Smart generate both private and social benefits. 
Private benefits are the dollar-valued amount of electricity conserved 
directly attributable to the program. These benefits differ from those 
illustrated in Fig. 1. They are program specific and accrue at the 
program-level (i.e., they exclude transfers). Moreover, they only mate-
rialize, from the utility’s perspective, if the program addresses a pre- 
existing market failure. Without a market failure, private actions in 
the market would be optimal. For example, Hat Smart sought to improve 
environmental outcomes because the price of electricity failed to 
internalize the full damages from its generation. While CO2e emissions 
are the focus in this paper, a wide range of alternative market failures 
have been highlighted (Fowlie et al., 2018). Examples include imperfect 

information (e.g., consumers are unaware of the benefits of energy ef-
ficiency), capital market failures (e.g., consumers cannot obtain 
financing for profitable investments in efficiency), split incentive prob-
lems (Papineau, 2017; Jessoe et al., 2020) (e.g., the agent paying the 
utility bill may be different than the agent consuming energy) as well as 
a series of behavioural economic explanations such as myopia and 
inattentiveness (Allcott and Greenstone, 2017). Market failures imply 
that, absent an incentive from the utility, the public or social benefit of 
energy efficiency, from, say, reduced CO2e emissions, does not factor 
into private decisions to spend on more efficient clothes washers. 

Fig. 2, illustrating the market for energy efficiency and based on 
Boomhower and Davis (2014), depicts the primary economic elements 
of this class of programs. The blue downward sloping line plots the 
demand for energy conservation investment, the number of households 
who adopt an efficiency-enhancing product. This reflects the willingness 
of households to pay for electricity savings when purchasing a new 
appliance. As in Fig. 1, the underlying idea is that appliances are 
differentiated products and the efficiency of clothes washers and dryers, 
for instance, represent a core attribute of these goods. The blue line 
reflects the demand for the characteristic of “efficiency”, holding all 
other appliance characteristics constant. Also, drawn in Fig. 2 is a hor-
izontal private cost curve. This is the (unsubsidized) “total price” that 
consumers must pay for the energy efficiency attribute, holding all other 
characteristics constant. This total price is comprised of any premium 
paid for the appliance plus the lifetime discounted operating costs of the 
appliance. (Operating costs primarily depend on the price of electricity.) 
A second, dashed horizontal line is also drawn. This is the price of ef-
ficiency net of the subsidy rate, where s* is the rebate provided by the 
utility. The asterisk (*) on s* is used as in Boomhower and Davis (2014) 
to illustrate the socially optimal subsidy level. This curve sits below the 
initial private cost curve because the subsidy for energy efficiency is 
designed to reduce both the cost of purchasing an energy efficient 
appliance and the lifetime cost of energy consumption. 

Fig. 2 highlights several important dimensions of the program. The 
subsidy level is represented by s*. s* is the amount of money provided by 
the utility to the household for the purchase of a new energy efficient 
appliance. The marginal consumer is willing to pay for efficiency until 
the private benefits equal her private costs. Without a subsidy, the de-
mand for efficiency equals Q0. s* lowers the private cost of efficiency and 
thus increases the number of adopters from Q0 to Q*. Given these 
equilibria, three regions are apparent in Fig. 2. First, utilities are not able 
to discriminate between those that place high and low values on effi-
ciency (e.g., the utility cannot distinguish between the household in 

Fig. 1. Influence of rebate on Household’s private decision to invest in energy efficiency. 
Note: Panel (a) represents a scenario where a rebate supports energy efficiency. The pre-rebate optimal appliance choice is given by point A. The post-rebate optimal 
appliance choice is shown by point B. At B, the appliance purchased by the household is larger and uses less electricity per unit services as B sits above and the right of 
A. The improvement in efficiency is measured as the horizontal distance between A and B. A sufficiently large horizontal shift means that the flow of services 
provided by the appliance at B is likely to use less electricity than appliance at point A, even though it is larger. The same shifts occur in Panel (b); however, in this 
panel, while there is an improvement per unit services when a household shifts from point C to D, these savings in electricity are insufficient to compensate for the 
increase in appliance size. 

Fig. 2. Demand of energy efficiency in the appliance market (source: Boom-
hower and Davis, 2014). 
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panel (a) or (b) of Fig. 1). Households with high willingnesses to pay for 
electricity conservation would have invested in efficient appliances 
without a subsidy. Area A, therefore, represents a transfer to infra-
marginal households, those consumers who intended to purchase an 
energy efficient appliance irrespective of the subsidy (or those, like in 
panel (b), who obtain an appliance so large that it negates any electricity 
reduction). In other words, even in a counterfactual scenario where s =
0, these households would make identical decisions. (A positive subsidy, 
of course, lowers the cost of their investment.) As these households 
would have invested in energy efficiency even in counterfactual scenario 
where there is no subsidy, any reduction in monthly electricity con-
sumption from these accounts is not a conservation benefit attributable 
to Hat Smart; the program did not change outcomes and area A repre-
sents an economic transfer. Yet, while reduced electricity consumption 
from households in area A is not a benefit attributable to Hat Smart, it is 
equally important emphasize that transfers are not economic costs.12 

They are purely distributional, reflecting a shifting of economic sur-
pluses between groups. 

Area B in Fig. 2 does represent the private benefits attributable to Hat 
Smart. This triangle captures the additional conservation investment 
that is directly induced by the subsidy (e.g., this reflects the horizontal 
increase in energy efficiency shown in panel (a) of Fig. 1). 

For any given subsidy, s*, the economic benefits of the program vary 
with the slope of the private benefit curve. More elastic demand for 
efficiency implies larger benefits from utility-provided subsidies. In-
elastic demand for efficiency, in turn, implies that subsidy programs 
may struggle to induce additional conservation, because households are 
unresponsive along the efficiency margin. As benefits in this context are 
limited to electricity conservation, this means that the elasticity of 
electricity consumption with respect to the subsidy is the key parameter 
needed to measure private benefits from the program. 

Fig. 2 also illustrates the social benefit attributable to the conserva-
tion program. This is shown by area C. The red social benefit line rep-
resents the sum of the private benefits from electricity conservation plus 
any additional social benefits coming via spillover effects. Reduced 
emissions and the associated environmental and health improvements 
imply that private investments in efficiency have positive spillover ef-
fects and that subsidies can increase these social benefits in conjunction 
with the private gains. Spillovers include CO2e abated and lower 
ambient concentrations of local pollutants. The size of area C depends on 
both the slope of the social benefit curve and marginal value of the ex-
ternality. Fig. 2 shows a scenario where the subsidy just so happens to 
equal the marginal damage from CO2e emissions. In practice, these are 
often not equal. Further, in this analysis, social benefits equal a constant 
marginal damage multiplied by the tonnes of emissions abated. Medi-
cine Hat has virtually none of the air quality issues that are prevalent in 
larger urban centres. As a result, the social benefits of efficiency can be 
limited to tonnes of CO2e abated. The constant therefore reflects the 
social cost of carbon (SCC). 

3.2. Estimating the subsidy elasticity of electricity consumption 

As mentioned, no information is available on which appliances 
households purchased. Thus, measurement of benefits is constrained to 
the evaluating the reduced-form effect of subsidies on electricity con-
sumption, the derived demand from the horizontal axis in Fig. 1. The 
utility’s goal is to reduce electricity consumption, however, so this is the 
relevant statistic from their perspective. Simply, rebates induce the 

purchase of efficient appliances, efficient appliances reduce demand for 
electricity, reduced electricity demand entails that the utility achieves 
its objective. 

A reduced-form equation captures the effect of incentives of elec-
tricity consumption and hence measures the benefits attributable to this 
narrow objective. Specifically, the model estimated is: 

yit = α⋅HatSmart Incentiveit + γi + τt + uit  

where yit is energy consumption by household i in period t. Energy 
consumption is measured as kWh of electricity per month. This repre-
sents the electricity for which a household is billed in a given month. The 
number of households, i, included in any specific econometric model 
changes based on the source of identifying variation. In the broadest 
model, the sample includes all households in Medicine Hat. Hat Smart is 
a voluntary program however. Households self-select into it. In more 
restricted specifications, the sample is therefore limited to only those 
households that received an incentive for a particular category of pur-
chase (e.g., refrigerators). The rationale underlying the different sam-
ples is that selection bias poses a problem if those households that 
received a rebate for, say, a new dishwasher are fundamentally different 
than the control group (i.e., those that did not obtain a rebate). If they 
are fundamentally different, it may be the case that the parameter of 
interest, α, will over- or under-estimate the true effect of Hat Smart. γi is 
an address fixed effect. Including γi captures a wide range of variables, 
such as a house’s square-footage and location, that are time invariant 
but fundamentally unobservable. γi alleviates many concerns over po-
tential omitted variable bias. Time is measured as months-of-sample and 
common time-specific shocks such as weather are captured by τt, the 
time fixed effect. uit is the error term that captures everything that varies 
at the household-by-time level. 

α is the coefficient of interest, representing the change in energy 
consumption per $100 of incentive. If α = 0, then subsidies are infra-
marginal as shown by region A in Fig. 2. In contrast, α < 0, suggests that 
the subsidy did decrease electricity consumption. Identification of this 
parameter in the most restrictive models exploits differences in the 
timing of rebate cheques conditional on the time and address fixed ef-
fects. Fig. 3 illustrates this timing. Household 1, for example, receives a 
rebate in, say, January, while household 2 receives their cheque in 
March. Unbiased evaluation of Hat Smart requires that, conditional on 
address and time fixed effects, uit is uncorrelated with incentive pay-
ments. The identifying assumption is that households 1 and 2 are 
conditionally identical but for the timing of their Hat Smart rebates. This 
means it is possible to use household 2 to formulate a counterfactual for 
household 1’s electricity consumption in the absence of the rebate 
cheque. This assumption is viewed as reasonable especially for the 
restricted samples that exploit variation in timing of Hat Smart cheques 
paid for the identical types of investment (e.g., rebates on refrigerators). 

3.3. Economic implications of Hat Smart’s surcharge 

A common misperception is that whatever money paid to households 
via programs such as Hat Smart is a cost of the program. But transfers are 
not economic costs. Given Hat Smart’s financing structure, only features 
that introduce distortions in decision-making are costs. As Hat Smart is 
completely funded via a surcharge on high consumption households 
(excluding the provincial funding used in the first year), economic costs 
only arise from the deadweight loss due to reduced demand for elec-
tricity. Moreover, surcharges have an additional feature: as with rebates, 
reduced consumption attributable to a fee or surcharge generates spill-
overs and social benefits. Thus, both the deadweight loss of the ECC as 
well as the social benefits from reduced electricity generation must be 
measured. 

12 Transfers are predominantly funded by ratepayers, but the province did 
provide money in first wave of Hat Smart. As taxpayers contributed to the 
program, there would also be inefficiencies associated with the collection of tax 
revenue. Because these tax distortions are believed to be small (because the 
funds from taxpayers are small), they are excluded from the analysis and 
ignored in Fig. 3. 
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3.4. Deadweight loss from surcharge 

Fig. 4 illustrates the economic costs from Hat Smart using the stan-
dard supply and demand graph. The downward sloping blue curve is the 
demand curve. This represents a household’s demand for electricity. The 
red curves are the within month supply functions facing this household. 
A household’s supply function depends on their total monthly con-
sumption and the threshold at which the ECC kicks in. If a household 
consumes less than 950 kWh/month, the standard constant rate supply 
curve applies to all consumption. After the threshold, these high energy 
consuming households must pay the additional ECC fee. For those 
households that exceed 950 kWh per month, the supply curve jumps to 
SupplyECC for all consumption exceeding that threshold. The blue tri-
angle represents the extent to which households change their behavior – 
reduce demand – because of the higher price for electricity. Without the 
fee, they would consume Q*. With the fee, they consume QECC. The 
triangle is the deadweight loss due to the energy conservation surcharge 
and is the economic cost of Hat Smart. Of course, this triangle only exists 
for consumption in excess of the ECC threshold.13 

The size of this triangle critically hinges on the responsiveness of 
demand with respect to the ECC. This is encapsulated in the price 
elasticity of demand. A smaller elasticity of demand (in absolute value) 
suggests that the demand curve is steep and households do not notably 
alter their behaviour in response to the surcharge. The deadweight loss 
from the ECC is small in this case. This can be contrasted with a flatter 

demand curve where the elasticity of demand is larger (in absolute 
value) and the economic costs are potentially large. 

The deadweight loss (DWL), or costs, of Hat Smart, in a single mar-
ket’s price-quantity space, is calculated as: 

DWL=
1
2
ηQpQ

(
ECC

p

)2  

where p is the per kWh price, and Q is demand above the 950 kWh/ 
month threshold. ηQ is the elasticity of demand. This deadweight loss 
calculation assumes that the marginal utility of income is constant, a 
reasonable assumption given the budget share of electricity. 

As stated, the deadweight loss formula varies with the elasticity of 
demand and measures the gross economic costs from Hat Smart – i.e., 
the costs without factoring in the social value from the reduction in 
electricity consumption. The elasticity of demand, whose estimation is 
discussed next, also summarizes the reduction in electricity consump-
tion caused buy the ECC. Fewer kWh consumed implies fewer tonnes of 
CO2e emitted. Thus, the elasticity of demand permits the calculation of 
social benefits too. The net economic costs of Hat Smart subtract social 
benefits from the surcharge’s deadweight loss. The social benefits are 
converted to a dollar-value by multiplying the number of tonnes of CO2e 
abated – i.e., the reduction in electricity demand attributable to the ECC 
– by the constant SCC. 

3.5. Estimating the elasticity of electricity demand 

Two empirical methodologies are applied to estimate the elasticity of 
demand for electricity. First, models similar to the ones estimated to 
evaluate the benefits of Hat Smart are formulated. An important dif-
ference, however, is that the regressions required to estimate the elas-
ticity of demand have no cross-sectional variation in prices across 
households. This means that the source of identifying variation used to 
pin down α cannot be used to determine the elasticity of demand, 
because, a household whose average consumption is, say, 700 kWh per 
month pays an identical per kWh price as another household with 
consumption of 700 kWh per month. When evaluating the benefit side of 
the equation, it is possible for otherwise similar households to receive 
rebate cheques at different points in time and this idiosyncratic variation 
allows for clear identification of the parameter of interest. Restricting 
the analysis to time series variation limits the reliability in the elasticity 
estimates as it is possible for time-varying shocks that are correlated 
with price (e.g., an economic downturn) to bias the coefficients. 

As a result, an alternative “bunching estimator” is used to infer the 
elasticity of demand in the cross-section of the immediate vicinity 
around the ECC threshold.14 The bunching estimator applied here builds 
on Shaffer (2020) (see also, Sallee and Slemrod (2012), Bastani and Selin 
(2014) and Kleven (2016)). The idea is that the discrete jump in prices at 
950 kWh, attributable to the ECC, can be exploited to infer the elasticity 
of electricity demand in the region around the surcharge. Specifically, if 
there is excess mass on the low price side of the threshold, this mass can 
be interpreted as a behavioural response to the surcharge. The elasticity 
takes the form: 

Fig. 3. Illustration of Timing used to Identify Rebate Elasticity.  

Fig. 4. Deadweight loss due to ECC  

13 This characterization of the deadweight loss triangle potentially overlooks 
other distortions that are common to electricity pricing. For example, electricity 
rates are frequently set equal to average, rather than marginal, cost. Likewise, 
the triangle is also gross of the costs of environmental externalities, a point 
considered below. 14 Observations are pooled and treated as cross-sectional. 
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ε̂ =
B̂
/

ĥ0(z*)

z*ln
(

p1
p2

)

where z* is the price threshold, B̂ is the measured excess mass to the left 
of the surcharge threshold and ĥ0(z*) is the estimated mass that we 
would expect to see in a counterfactual “no surcharge” scenario. p1 is the 
price of electricity before the surcharge is levied and p2 is the post- 
surcharge price. Calculating this elasticity requires estimating several 
regions of the electricity demand distribution. ĥ0(z*), in particular, is 
critical. This counterfactual is estimated in a region around z*: [z* − δb,

z* + δb], where δ represents the width of an interval around the 
threshold z*, b indexes the actual region considered and c will index the 
counterfactual region. The region around z* is an area where the density 
of electricity demand is expected to be smooth but where there is, in fact, 

bunching. Start by defining three regions: ĥ
*
− : [z* − δb − δc, z* − δb], 

ĥ : [z* − δb, z* +δb] and ĥ
*
+ : [z* + δb, z* + δb + δc]. It is possible to use 

the densities in each of these three regions to calculate the following 

cumulative densities: Ĥ
*
− = δc ĥ

*
− , Ĥ

*
= 2δb ĥ

* 
and Ĥ

*
+ = δc ĥ

*
+. Given 

these quantities it is possible to define actual excess mass as: 

B̂ = Ĥ
*
−

δb

δc

(
Ĥ

*
− + Ĥ

*
+

)

And the counterfactual mass as: 

ĥ0 =
1
2

(

ĥ
*
− + ĥ

*
+

)

With B̂ and ĥ0 in hand it is possible to calculated, the elasticity of 
demand. The masses in the three regions around the threshold z* - 

ĥ
*
− , ĥ and ĥ

*
+ - are estimated using Epanechnikov kernels. A width of 45 

kWh per month is used for δb. Standard errors for the elasticity are 
bootstrapped. 

4. Results 

4.1. Energy savings attributable to Hat Smart rebates 

The change in electricity consumption for each category of rebate is 

shown in Table 2. Three separate econometric models are estimated, one 
for each air conditioners, clothes washers, refrigerators and dish 
washers. These models are distinguished by the underlying source of 
variation that statistically identifies the parameter of interest. Column 
(1) uses all households in the city as a baseline. Column (2) restricts the 
sample to households that received any Hat Smart incentive any point in 
time. For example, when I evaluate the effect of, say, the clothes washer 
incentive, the counterfactual is formulated by using households who 
received dishwasher, fridge and air conditioner rebates as well as the 
differential timing of clothes washer rebates. The reason for this sample 
restriction is that there may be some fundamentally unobservable dif-
ference between households that received a rebate and those that did 
not. This unobserved difference may bias the estimates and thus needs to 
be adjusted for. Column (3) take this one step further. It provides the 
most credible econometric identification. Column (3) focuses exclu-
sively on households that receive identical rebates but exploits differ-
ences in the timing at which those rebates were received as illustrated in 
Fig. 3. The idea is that two households that received, say, an incentive to 
purchase a new dishwasher – but where one received her cheque in 
January, while the other received her rebate in June – are more similar 
than households who did not receive a dishwasher rebate. Defining the 
samples this way implies that the sample sizes for columns (1) and (2) 
will be identical across rebate types. The sample in column (3) varies 
across rebate types, so contains different numbers of observations. 

All econometric specifications contain household and month-of- 
sample fixed effects. Throughout, all standard errors are clustered on 
individual addresses (i.e., at the household level). All coefficients should 
be interpreted as the reduction in kWh per $100 rebate. 

Table 2 presents the results. Four panels are included, one for each 
air conditioners, clothes washers, refrigerators and dish washers. 

Air conditioners. Rebates for air conditioners led to the largest 
reduction in electricity consumption, but none of the point estimates are 
statistically distinguishable from zero. The baseline model, column (1), 
shows that a $100 incentive reduces monthly electricity usage by 6.8 
kWh per month. This decreases to a statistically insignificant 5.5 kWh 
per month in column (2). Column (3), providing the most credible 
identification, shows the largest reduction in electricity consumption at 
12 kWh per month or 144 kWh per year.15 These coefficients are un-
stable and the confidence intervals are wide, implying that the true 
value could be notably larger or smaller. As such, it is difficult to draw 
meaningful inferences. 

Despite the imprecision of the point estimates, relative to the other 
categories of rebates, air conditioners appear to yield the largest re-
ductions in electricity use. It is possible to use these point estimates to 
provide a sense of the underlying factors that drive the energy efficiency 
gap. Expectations about asset durability turn out to be a major 
contributing factor. The US Department of Energy projects the typical 
lifespan of an air conditioner to be 15–20 years (DOE, 2017). Assuming 
an air conditioner lasts for 15 years, the total electricity savings per $100 
incentive is approximately 2,160 kWh. At a $0.08/kWh rate for elec-
tricity consumption and with an 8% discount, the private return from 
this $100 rebate for an energy efficient air conditioner is − 1.4%. 
Extending the assumed air conditioner lifespan to 20 years yields elec-
tricity savings totaling 2,880 kWh with a private return from this $100 
equaling 13.1%, suggesting that investing in energy efficient air condi-
tioning is privately beneficial. Including social benefits from abated 
CO2e, of course, makes investing in air conditioner efficiency more 
attractive as does a smaller discount rate. Yet, while these values seem 
promising (i.e., investing in air conditioning yields net benefits for 

Table 2 
Energy savings attributable to hat smart rebates.   

(1) (2) (3) 

Panel A: Air conditioner rebates 
kWh per $100 incentive − 6.797 − 5.512 − 12.005  

(8.105) (8.171) (8.675) 
Number of households 27,921 3,925 228 
Number of observations 2,200,266 308,069 17,295 
Panel B: Clothes washer rebates 
kWh per $100 incentive − 0.035 1.251 2.068  

(2.104) (2.386) (2.520) 
Number of households 27,921 3,925 2,435 
Number of observations 2,200,266 308,069 199,462 
Panel C: Refrigerator rebates 
kWh per $100 incentive − 1.847 − 3.699 − 2.764  

(3.402) (3.562) (4.813) 
Number of households 27,921 3,925 833 
Number of observations 2,200,266 308,069 65,579 
Panel D: Dishwasher rebates 
kWh per $100 incentive 0.139 0.187 0.163  

(0.085) (0.088) (0.073) 
Number of households 27,921 3,925 675  

2,200,266 308,069 53,049 

Notes: Value in the parenthesis report standard errors clustered at the account 
level. 

15 Unlike clothes washers, refrigerators and dishwashers, air conditioners are 
only used in during warm months. If the model in column (3) is re-estimate, but 
just for summer months, the point estimate decreases by 2 kWh/month to 
− 10.211 kWh per $100 rebate. Similar to the model in Table 2, this standard 
error on this point estimate is large, equaling 9.784. 
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reasonable parameter values), the empirical support for strong claims is 
shaky. It is likely too shaky, in fact, to be useful for policy analysis or to 
guide program design. Indeed, the estimates should be interpreted with 
healthy caution given the imprecision of the coefficients: it is difficult to 
draw meaningful conclusions from these models. 

Clothes washers. Panel B in Table 2 presents the results for clothes 
washers. Column (1) shows that a $100 rebate decreased electricity 
consumption by 0.04 kWh per month. This value increases to 1.3 and 2.1 
kWh per month in columns (2) and (3). None of the specifications have 
coefficients that are statistically distinguishable from zero. Further, not 
only do the confidence intervals include zero, the standard errors are 
large. The imprecision of these estimates means that it is difficult to 
argue that rebates on clothes washers had any effect on household 
electricity consumption. And while no evidence of an effect is different 
than finding no effect, the positive point estimate suggests that it is 
unlikely much energy savings was obtained via clothes washer rebates. 

Washing machines have seen some of the largest efficiency gains 
over the past two decades. Thus, at first glance, this result seems odd. It 
is important to re-emphasize that these models are measuring the impact 
of the incentives and not the effect of the underlying technologies. 
Washer efficiency has improved, but these regressions demonstrate that 
the incentives did not induce any incremental, or marginal, improve-
ment in efficiency through the adoption of more efficient units. Further, 
while it is not possible to test explicit mechanisms with the data avail-
able, it is plausible that households engaged in upgrading behaviour. 
Larger and feature-enhanced models likely replaced smaller and more 
basic appliances. This upgrading may have offset any rebate-induced 
improvements in energy efficiency. 

Refrigerators. As with clothes washers, Panel C shows that refrig-
erator incentives have no statistically significant effect on electricity 
consumption. Again, wide standard errors make it difficult to make 
definitive claims. Column (1) shows a point estimate of − 1.9 kWh per 
month from a $100 rebate, increasing slightly to − 3.7 and − 2.8 kWh per 
month in columns (2) and (3). While statistically indistinguishable from 
zero, these point estimates are larger than those found for refrigerators 
in Houde and Aldy (2017), but smaller than those in Davis et al. (2014). 
Ultimately, as with clothes washers, these models suggest that little 
energy savings are gained by incentivizing the purchase of energy effi-
cient refrigerators (at least, given the existing structure of Hat Smart, 
where households were not required to remove their old fridges). 

Dishwasher. Finally, Panel D of Table 2 displays the results from the 
dishwasher regressions. Column (1) where all other households in 
Medicine Hat act as a control group shows that a $100 dishwasher 
incentive increases electricity consumption by 0.1 kWh per month. This 
estimate is not statistically distinguishable from zero. Restricting the 
sample to households that received any rebate changes the estimate to a 
0.2 kWh per month in columns (2) and (3). These two models do show a 
statistically significant increase at conventional levels, but the magni-
tudes are trivial. Model (3), for instance, suggests that a dishwasher 
incentive increased electricity consumption by 0.2 kWh per month. In 
essence, given the comparatively precise standard errors, it is safe to 
claim that dishwasher incentives have no meaningful effect on elec-
tricity consumption and, hence, Hat Smart produced no benefit from 
providing these rebates. 

4.2. Costs and benefits of Hat Smart surcharge 

Few concrete benefits from Hat Smart rebates are identifiable in 
Table 2. Hat Smart’s energy conservation incentives failed to translate 
into reduced electricity consumption. These results echo others that are 
found in the literature. But a distinguishing feature of Hat Smart is it is a 
revenue neutral program with two instruments: rebates and surcharges. 
The surcharge is investigated next. 

As described, the gross economic costs of Hat Smart equal the 
deadweight loss attributable to the surcharge, which is a function of the 
elasticity of electricity demand. So, the first step in the evaluating the 

surcharge involves estimating the elasticity of electricity demand with 
respect to price. Table 3 presents three estimates for this statistic. 

Table 3 shows that, using time series variation, neither the short- nor 
long-run elasticities of electricity demand are statistically distinguish-
able from zero. In fact, both point estimates suggest that quantity 
demanded increases as prices increase. The point estimate on the short- 
run demand for electricity is 0.3, implying that a 1% increase in price 
leads to a 0.3% increase in quantity demanded. The corresponding long- 
run estimate is also 0.3. These coefficients suggest two things. First, 
electricity demand may be extremely inelastic. Electricity demand is 
ordinarily viewed as extremely inelastic with limited response to 
changing prices and it may not be statistically possible to distinguish the 
true response from zero. In other words, the true demand response is 
very small (virtually a vertical line in Fig. 4). Interestingly, if electricity 
demand is indeed perfectly inelastic, Hat Smart effectively has no eco-
nomic cost beyond its administration expenses. Because Hat Smart is 
revenue neutral and funded by the surcharge on electricity consump-
tion, the only economic costs arise via quantity contraction in the 
electricity market. A perfectly inelastic demand response implies that 
consumers do not reduce electricity consumption due to the ECC and, 
hence, there is no deadweight loss. Instead, with perfectly inelastic de-
mand, the ECC is distributional, transferring surplus from households to 
the utility (who then recycle it back to households). 

Second, it is possible that other time-varying factors such as the state 
of the economy are correlated with both price and electricity demand 
and the resulting time-series coefficients are biased. Indeed, given that 
only time series variation is used to recover these coefficients, this is 
likely the most plausible explanation for the positive price elasticities of 
demand. Further, given the size of the standard errors, it is difficult to 
infer anything meaningful about consumer responses to electricity 
prices. 

While the top of Table 3 uses time series variation to infer the elas-
ticity of demand, the bottom panel applies the cross-sectional bunching 
estimator. This bunching estimator exploits the discontinuity in elec-
tricity pricing near the threshold for the ECC, by comparing the 
behaviour of households slightly below and slightly above the 950 kWh 
per month cut-off. The identifying assumption in this analysis is that, 
even though the variation is cross-sectional, households that are within a 
small bandwidth of the threshold are exchangeable or sufficiently 
similar to infer a credible estimate of the behavioural response to higher 
electricity prices. 

As Table 3 illustrates, the elasticity of electricity demand with 
respect to price, in the cross-section, equals − 0.05. This estimate is 
statistically significant at the 0.1% level implying that households do, in 
fact, respond to prices by reducing their demand and that there is a cost 
to financing Hat Smart (as well as benefits from less electricity con-
sumption). Importantly, the − 0.05 elasticity of electricity demand is 
virtually identical to the one obtained for British Columbia by Shaffer 
(2020). 

Table 3 
Elasticity of electricity demand.  

Time series variation 

Short-run elasticity 0.273   
(0.309)  

Long-run elasticity  0.330   
(0.372) 

Month-of-year fixed effects Y Y 
Location-year fixed effects Y Y 
Number of observations 2,200,260 2,200,260 
Cross-sectional variation 
Elasticity − 0.052   

(0.001)  
Number of observations 40,299  

Notes: The top panel contains clustered standard errors with clustering at the 
account level. Standard errors for the bunching estimator are obtained via 
bootstrapping with 50 replications. 
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This bunching elasticity is used to calculate both the deadweight loss 
and the reduction in electricity consumption attributable to the ECC. 
Given the paucity of the elasticity estimate, these values are small. (Also, 
as the time series models did not yield statistically significant elasticities 
of demand, they should be used with caution and interpreted as an upper 
bound on the true costs.) The gross deadweight loss from the ECC sur-
charge equals a paltry $1,985 over the entire 2008 to March 2014 
period. Granted, this deadweight loss does not include any fixed or 
variable administrative costs involved in managing the program but is 
best labeled as miniscule. Simply, the combination of three factors, (i) a 
tiny ECC, (ii) a small elasticity of demand and (iii) a modest share of 
households paying the ECC, leads to a clear conclusion: the ECC sur-
charge on electricity generates trivial market distortions and hence 
financing Hat Smart involves negligible economic costs. 

The $2,000 excess burden of Hat Smart represents the “gross of 
environmental benefits” cost of the program. This “cost” doesn’t factor 
in prospective social benefits from reduced electricity production as 
these gross costs do not factor in environmental improvements. The net 
costs (or benefits) of Hat Smart require adjusting for the social value of 
reduced CO2e emissions. These emissions are valued using Canada’s 
social cost of carbon, which equals $40.70/tCO2e and are discussed 
second. Using the cross-sectional elasticity, the program cumulatively 
reduced electricity consumption by 536.37 MWh. All of Medicine Hat’s 
electricity is generated via natural gas. Thus, applying NRCan (2018) 
conversion factors, the ECC reduced CO2e emissions by 108.1tCO2e 
over the sample period. At a social cost of carbon of $40.70, this means 
that the ECC produced gross environmental benefits of $4,401. The net 
benefits – environmental benefits less the deadweight loss – from the 
surcharge then equal $2,416. Of course, this net benefit calculation 
hinges on the assumed value of the SCC. A smaller SCC – or a larger 
elasticity of demand – could easily make the net benefits of ECC become 
net costs. Thus, while the surcharge did improve economic welfare, this 
conclusion is sensitive to key assumptions. 

Based on these results, the chief outcome of Hat Smart involves 
transferring money between households in the city with few meaningful 
economic costs or benefits – and little energy conservation. 

5. Conclusion and policy implications 

Economists have long argued that the savings from energy conser-
vation programs tend to be overstated (Joskow and Marron, 1992). The 
results in this paper support this. Few Hat Smart rebates had any sta-
tistically measurable effect on electricity consumption, and, more 
importantly, most point estimates are not economically meaningful. 
Using reasonable assumptions for the SCC and a locally inferred elas-
ticity of electricity demand, the surcharge levied on high consumers did 
produce net benefits, but the magnitude is negligible. Indeed, Hat Smart 
served primarily to transfer money between households in the city. 
Interestingly, while the subsidies appear to be dogged by potential 
non-additionality or upgrading behaviour, the mandated revenue 
neutrality – and the requirement to fund the subsidies via a surcharge on 
ratepayers – did yield benefits. Typically, revenue neutrality constraints 
are viewed as second-best restrictions on program design. In this sce-
nario, this constraint on an appliance rebate program compensated for 
households’ behavioural responses. Of course, this is not a feature of 
revenue neutrality but a consequence of levying prices on externalities. 
In essence, prices work. 

This paper fits within an emerging literature on the economics of 
energy efficiency programs. Unfortunately, from both an energy and 
economic efficiency perspective, this research paints a cynical picture of 
energy conservation initiatives. Utility-based and government-funded 
energy efficiency programs are under-performing by not delivering 
their promised electricity reductions. This begs the question: are there 
policy tweaks that might support better results? Three options are dis-
cussed: targeting and verification, rebates conditional on energy con-
servation and higher prices. 

Targeting and verification. A commonly advocated recommenda-
tion for energy efficiency programs is more precise targeting and veri-
fication (e.g., Allcott and Greenstone, 2017). Targeting is easy to 
understand but hard to do well due to information asymmetry problems. 
Targeting is actually is catch-all term that encompasses several themes. 
Targeting may mean that funds are directed to low income households 
or towards “energy hogs” – i.e., houses with unusually high consumption 
for their profile with the hope that these households have greater scope 
for improvement per dollar incentive. Regardless of which targets are 
selected, targeting relies on some underlying heterogeneity in the pop-
ulation where rebates induce a particular subset of households to invest 
in energy efficiency and reduce their electricity consumption. This 
heterogeneity also needs to be correlated with some observable variable 
(e.g., consumption level or address) and the utility needs to be able to 
sort based on this observable variable. Practically, solving this imperfect 
information problem that may be intractable or politically impossible 
for many utilities. 

Similar to targeting, verification may also improve program perfor-
mance, especially when beer-fridge-type problems are a concern. Veri-
fication means that program administrators require evidence that old 
appliances are removed prior to issuing rebates. Eligibility for rebates 
could mimic the Mexican Cash for Coolers program studied by Davis 
et al. (2014). Recipients in this program demonstrated that they were 
replacing appliances that were at least 10 years old and opting for 
models of approximately the same size. These verification steps may 
mitigate energy consuming upgrading behaviour. 

Hat Smart’s absence of a verification policy also opens it to pro-
spective moral hazard problems (Giraudet et al., 2018). The program 
may induce households change their behavior and undertake unob-
servable actions that undermine the program’s effectiveness. In fact, the 
“beer-fridge” problem, described in the introduction, can be interpreted 
an example of moral hazard: households are provided incentives whose 
objective is to reduce electricity consumption. Yet, the program leads 
these households to adjust their behavior (i.e., adding an appliance), 
making adjustments that offset the prospective gains from the program. 
Verification could limit these moral hazard challenges. 

Despite the appeal of targeting and verification, caution is warranted 
before pursuing these strategies. Simply, the payoff may not materialize. 
Both targeting and verification introduce administration costs and can 
be unpopular with residents who are familiar with a “no questions 
asked” program. Indeed, administrators of the Hat Smart program 
voiced precisely this concern. Moreover, the additional energy savings 
from targeting and verification may be small. Fowlie et al. (2018), for 
example, demonstrated that a large-scale encouragement program, one 
targeted at low income households, yielded only small gains but the 
costs of this encouragement were approximately $1000 per household. 
Finally, targeting and verification fail to address how intensive house-
hold behaviour may change due to the subsidy (e.g., there may be 
rebound effects). 

Payments conditional on energy conservation. Rather than 
directly targeting appliances, Hat Smart rebates could be directly tied to 
energy consumption. Cheques could be issued if households reduce their 
energy usage versus some benchmark (e.g., by 5% of previous year’s 
electricity consumption). This style of program was implemented by the 
provincial utility in the Canadian province of British Columbia via a 
scheme known as Team Power Smart. Team Power Smart is a voluntary 
program that offers households the opportunity to undertake annual 
conservation “challenges” (Fraser, 2020). Households that are able to 
reduce their annual, weather-adjusted electricity use by 10%, relative to 
the previous 12 month period, receive a payment of $75 (Fraser, 2020). 

The advantage of this style of program is that households can choose 
the best method to reduce energy consumption, rather than being 
restricted to a finite set of rebates. That is, it is aimed at behaviour rather 
than at technology. For instance, a family that actively reduces its en-
ergy consumption by, say, reducing air conditioning in summer would 
not currently eligible for a Hat Smart payment. Under Team Power 
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Smart-style program, this family may be able to make a large contri-
bution to conservation goals and hence would be eligible for payments. 

Payments conditional on energy conservation suffer from several of 
the disadvantages afflicting targeting and verification. Administration 
costs, for example, may increase and they may be unpopular with 
households familiar with the “no questions asked” program. Further, 
Fraser (2020) demonstrates that continued conservation depends on 
repeated conservation challenges (i.e., interventions). Once participa-
tion lapses, Fraser shows that households backslide, forgoing a share of 
their energy savings. 

Higher prices. Finally, the main conclusion of this research is that 
pricing works. If policy-makers’ primary concern is improving energy 
conservation and reducing emissions, electricity prices could be 
increased substantially. Indeed, in the case studied here, the City of 
Medicine Hat appears to have significant scope to increase the price of 
electricity before substantial consumer behavioural changes are under-
taken. Higher prices mean that substantial additional revenue would be 
collected by the utility or municipality, funds that could be recycled, 
used to offset other taxes or to fund community projects. Ultimately, the 
experience of Hat Smart shows that pricing appears to work while re-
bates, at least in this context, disappoint. 
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